Do you want to publish a course? Click here

Rare Disease Identification from Clinical Notes with Ontologies and Weak Supervision

106   0   0.0 ( 0 )
 Added by Hang Dong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The identification of rare diseases from clinical notes with Natural Language Processing (NLP) is challenging due to the few cases available for machine learning and the need of data annotation from clinical experts. We propose a method using ontologies and weak supervision. The approach includes two steps: (i) Text-to-UMLS, linking text mentions to concepts in Unified Medical Language System (UMLS), with a named entity linking tool (e.g. SemEHR) and weak supervision based on customised rules and Bidirectional Encoder Representations from Transformers (BERT) based contextual representations, and (ii) UMLS-to-ORDO, matching UMLS concepts to rare diseases in Orphanet Rare Disease Ontology (ORDO). Using MIMIC-III US intensive care discharge summaries as a case study, we show that the Text-to-UMLS process can be greatly improved with weak supervision, without any annotated data from domain experts. Our analysis shows that the overall pipeline processing discharge summaries can surface rare disease cases, which are mostly uncaptured in manual ICD codes of the hospital admissions.



rate research

Read More

136 - Zifeng Wang , Yifan Yang , Rui Wen 2021
Current deep learning based disease diagnosis systems usually fall short in catastrophic forgetting, i.e., directly fine-tuning the disease diagnosis model on new tasks usually leads to abrupt decay of performance on previous tasks. What is worse, the trained diagnosis system would be fixed once deployed but collecting training data that covers enough diseases is infeasible, which inspires us to develop a lifelong learning diagnosis system. In this work, we propose to adopt attention to combine medical entities and context, embedding episodic memory and consolidation to retain knowledge, such that the learned model is capable of adapting to sequential disease-diagnosis tasks. Moreover, we establish a new benchmark, named Jarvis-40, which contains clinical notes collected from various hospitals. Our experiments show that the proposed method can achieve state-of-the-art performance on the proposed benchmark.
In the electronic health record, using clinical notes to identify entities such as disorders and their temporality (e.g. the order of an event relative to a time index) can inform many important analyses. However, creating training data for clinical entity tasks is time consuming and sharing labeled data is challenging due to privacy concerns. The information needs of the COVID-19 pandemic highlight the need for agile methods of training machine learning models for clinical notes. We present Trove, a framework for weakly supervised entity classification using medical ontologies and expert-generated rules. Our approach, unlike hand-labeled notes, is easy to share and modify, while offering performance comparable to learning from manually labeled training data. In this work, we validate our framework on six benchmark tasks and demonstrate Troves ability to analyze the records of patients visiting the emergency department at Stanford Health Care for COVID-19 presenting symptoms and risk factors.
Most person re-identification methods, being supervised techniques, suffer from the burden of massive annotation requirement. Unsupervised methods overcome this need for labeled data, but perform poorly compared to the supervised alternatives. In order to cope with this issue, we introduce the problem of learning person re-identification models from videos with weak supervision. The weak nature of the supervision arises from the requirement of video-level labels, i.e. person identities who appear in the video, in contrast to the more precise framelevel annotations. Towards this goal, we propose a multiple instance attention learning framework for person re-identification using such video-level labels. Specifically, we first cast the video person re-identification task into a multiple instance learning setting, in which person images in a video are collected into a bag. The relations between videos with similar labels can be utilized to identify persons, on top of that, we introduce a co-person attention mechanism which mines the similarity correlations between videos with person identities in common. The attention weights are obtained based on all person images instead of person tracklets in a video, making our learned model less affected by noisy annotations. Extensive experiments demonstrate the superiority of the proposed method over the related methods on two weakly labeled person re-identification datasets.
In a large-scale knowledge graph (KG), an entity is often described by a large number of triple-structured facts. Many applications require abridge
Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine entity typing task is that human annotated data are extremely scarce, and the annotation ability of existing distant or weak supervision approaches is very limited. To remedy this problem, in this paper, we propose to obtain training data for ultra-fine entity typing by using a BERT Masked Language Model (MLM). Given a mention in a sentence, our approach constructs an input for the BERT MLM so that it predicts context dependent hypernyms of the mention, which can be used as type labels. Experimental results demonstrate that, with the help of these automatically generated labels, the performance of an ultra-fine entity typing model can be improved substantially. We also show that our approach can be applied to improve traditional fine-grained entity typing after performing simple type mapping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا