Do you want to publish a course? Click here

Localized modes and dark solitons sustained by nonlinear defects

141   0   0.0 ( 0 )
 Added by Jingzhen Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark solitons and localized defect modes against periodic backgrounds are considered in arrays of waveguides with defocusing Kerr nonlinearity constituting a nonlinear lattice. Bright defect modes are supported by local increase of the nonlinearity, while dark defect modes are supported by a local decrease of the nonlinearity. Dark solitons exist for both types of the defect, although in the case of weak nonlinearity they feature side bright humps making the total energy propagating through the system larger than the energy transferred by the constant background. All considered defect modes are found stable. Dark solitons are characterized by relatively narrow windows of stability. Interactions of unstable dark solitons with bright and dark modes are described.



rate research

Read More

We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of flat-floor textquotedblleft bubbles, and topological excitations, in the form of dark solitons in 1D and vortices with winding number $m$ in 2D. Unlike bright solitons, delocalized bubbles and dark modes were not previously considered in this setting. The ground and excited states are accurately approximated by the Thomas-Fermi expressions. The 1D and 2D bubbles, as well as vortices with $m=1$, are completely stable, while the dark solitons and vortices with $m=2$ have nontrivial stability boundaries in their existence areas. Unstable dark solitons are expelled to the periphery, while unstable double vortices split in rotating pairs of unitary ones. Displaced stable vortices precess around the central point.
We present the study of the dark soliton dynamics in an inhomogenous fiber by means of a variable coefficient modified nonlinear Schr{o}dinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
We investigate nonlinear localized modes at light-mass impurities in a one-dimensional, strongly-compressed chain of beads under Hertzian contacts. Focusing on the case of one or two such defects, we analyze the problems linear limit to identify the system eigenfrequencies and the linear defect modes. We then examine the bifurcation of nonlinear defect modes from their linear counterparts and study their linear stability in detail. We identify intriguing differences between the case of impurities in contact and ones that are not in contact. We find that the former bears similarities to the single defect case, whereas the latter features symmetry-breaking bifurcations with interesting static and dynamic implications.
We introduce a discrete lossy system, into which a double hot spot (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a pair of amplified nonlinear cores embedded into it. We focus on the case of the self-defocusing nonlinearity and cubic losses acting at the HSs. Symmetric localized modes pinned to the double HS are constructed in an implicit analytical form, which is done separately for the cases of odd and even numbers of intermediate sites between the HSs. In the former case, some stationary solutions feature a W-like shape, with a low peak at the central site, added to tall peaks at the positions of the embedded HSs. The special case of two adjacent HSs is considered too. Stability of the solution families against small perturbations is investigated in a numerical form, which reveals stable and unstable subfamilies. The instability of symmetric modes accounting for by an isolated positive eigenvalue leads to their spontaneous transformation into co-existing stable antisymmetric modes, while the instability represented by a pair of complex-conjugate eigenvalues gives rise to persistent breathers.
We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the spinor multidimensional nonlinear Schr{o}dinger equation. Focusing on the two-dimensional case, we show that when gauge field can be split in a pure gauge and a rtext{non-pure gauge} generating rtext{effective potential}, the roles of these components in soliton dynamics are different: the btext{localization characteristics} of emerging states are determined by the curvature, while pure gauge affects the stability of the modes. Respectively the solutions can be exactly represented as the envelopes independent of the pure gauge, modulating stationary carrier-mode states, which are independent of the curvature. Our central finding is that nonzero curvature can lead to the existence of unusual modes, in particular, enabling stable localized self-trapped fundamental and vortex-carrying states in media with constant repulsive interactions without additional external confining potentials and even in the expulsive external traps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا