Do you want to publish a course? Click here

Symmetric and antisymmetric nonlinear modes supported by dual local gain in lossy lattices

248   0   0.0 ( 0 )
 Added by Boris Malomed
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a discrete lossy system, into which a double hot spot (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a pair of amplified nonlinear cores embedded into it. We focus on the case of the self-defocusing nonlinearity and cubic losses acting at the HSs. Symmetric localized modes pinned to the double HS are constructed in an implicit analytical form, which is done separately for the cases of odd and even numbers of intermediate sites between the HSs. In the former case, some stationary solutions feature a W-like shape, with a low peak at the central site, added to tall peaks at the positions of the embedded HSs. The special case of two adjacent HSs is considered too. Stability of the solution families against small perturbations is investigated in a numerical form, which reveals stable and unstable subfamilies. The instability of symmetric modes accounting for by an isolated positive eigenvalue leads to their spontaneous transformation into co-existing stable antisymmetric modes, while the instability represented by a pair of complex-conjugate eigenvalues gives rise to persistent breathers.



rate research

Read More

We introduce a system with one or two amplified nonlinear sites (hot spots, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrodinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra implies similarity of neither structure nor stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. Neither the stability is directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use graph representation of PT-symmetric networks allowing for simple illustration of linearly equivalent networks and indicating on their possible experimental design.
We introduce a system of two component two-dimensional (2D) complex Ginzburg-Landau equations (CGLEs) with spin-orbit-coupling (SOC) describing a wide-aperture microcavity laser with saturable gain and absorption. We report families of two-component self-trapped dissipative laser solitons in this system. The SOC terms are represented by the second-order differential operators, which sets the difference, $|Delta S|=2$, between the vorticities of the two components. We have found stable solitons of two types: vortex-antivortex (VAV) and semi-vortex (SV) bound states, featuring vorticities $left( -1,+1right) $ and $left( 0,2right) $, respectively. In previous works, 2D localized states of these types were found only in models including a trapping potential, while we are dealing with the self-trapping effect in the latteraly unconfined (free-space) model. The SV states are stable in a narrow interval of values of the gain coefficients. The stability interval is broader for VAV states, and it may be expanded by making SOC stronger (although the system without SOC features a stability interval too). We have found three branches of stationary solutions of both VAV and SV types, two unstable and one stable. The latter one is an attractor, as the unstable states spontaneously transform into the stable one, while retaining vorticities of their components. Unlike previously known 2D localized states, maintained by the combination of the trapping potential and SOC, in the present system the VAV and SV complexes are stable in the absence of diffusion. In contrast with the bright solitons in conservative models, chemical potentials of the dissipative solitons reported here are positive.
Dark solitons and localized defect modes against periodic backgrounds are considered in arrays of waveguides with defocusing Kerr nonlinearity constituting a nonlinear lattice. Bright defect modes are supported by local increase of the nonlinearity, while dark defect modes are supported by a local decrease of the nonlinearity. Dark solitons exist for both types of the defect, although in the case of weak nonlinearity they feature side bright humps making the total energy propagating through the system larger than the energy transferred by the constant background. All considered defect modes are found stable. Dark solitons are characterized by relatively narrow windows of stability. Interactions of unstable dark solitons with bright and dark modes are described.
Following the concept of $mathcal{PT}$-symmetric couplers, we propose a linearly coupled system of nonlinear waveguides, made of positive- and negative-index materials, which carry, respectively, gain and loss. We report novel bi- and multi-stability states pertaining to transmitted and reflective intensities, which are controlled by the ratio of the gain and loss coefficients, and phase mismatch between the waveguides. These states offer transmission regimes with extremely low threshold intensities for transitions between coexisting states, and very large amplification ratio between the input and output intensities leading to an efficient way of controlling light with light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا