No Arabic abstract
We formulate a fracton-elasticity duality for twisted moire superlattices, taking into account that they are incommensurate crystals with dissipative phason dynamics. From a dual tensor-gauge formulation, as compared to standard crystals, we identify twice the number of conserved charges that describe topological lattice defects, namely, disclinations and a new type of defect that we dub discompressions. The key implication of these conservation laws is that both glide and climb motions of lattice dislocations are suppressed, indicating that dislocation networks may become exceptionally stable. Our results also apply to other planar incommensurate crystals and quasicrystals.
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Motivated by the recently established duality between elasticity of crystals and a fracton tensor gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics of the underlying atoms. We thereby derive a hybrid vector-tensor gauge dual of a supersolid, which features both crystalline and superfluid order. The gauge dual describes a fracton state of matter with full dipole mobility endowed by the superfluid order, as governed by mutual axion electrodynamics between the fracton and vortex sectors of the theory, with an associated generalized Witten effect. Vortex condensation restores U(1) symmetry, confines dipoles to be subdimensional (recovering the dislocation glide constraint of a commensurate quantum crystal), and drives a phase transition between two distinct fracton phases. Meanwhile, condensation of elementary fracton dipoles and charges, respectively, provide a gauge dual description of the super-hexatic and ordinary superfluid. Consistent with conventional wisdom, in the absence of crystalline order, U(1)-symmetric phases are prohibited at zero temperature via a mechanism akin to deconfined quantum criticality.
Twisted bilayers of van der Waals materials have recently attracted great attention due to their tunable strongly correlated phenomena. Here, we investigate the chirality-specific physics in 3D moire superlattices induced by Eshelby twist. Our direct DFT calculations reveal helical rotation leads to optical circular dichroism, and chirality-specific nonlinear Hall effect, even though there is no magnetization or magnetic field. Both these phenomena can be reversed by changing the structural chirality. This provides a way to constructing chirality-specific materials.
In the study of three-dimensional gapped models, two-dimensional gapped states should be considered as a free resource. This is the basic idea underlying the notion of `foliated fracton order proposed in Phys. Rev. X 8, 031051 (2018). We have found that many of the known type I fracton models, although they appear very different, have the same foliated fracton order, known as `X-cube order. In this paper, we identify three-dimensional fracton models with different kinds of foliated fracton order. Whereas the X-cube order corresponds to the gauge theory of a simple paramagnet with subsystem planar symmetry, the novel orders correspond to twist
The evolution of a Landau Fermi liquid into a nonmagnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids, exciton condensates and unconventional superconductivity. Semiconductor moire materials realize a highly controllable Hubbard model simulator on a triangular lattice, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moire superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling behavior of the resistance, a continuously vanishing charge-gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the low-temperature magnetic susceptibility across the MIT and find no evidence of long-range magnetic order down to ~ 5% of the Curie-Weiss temperature. The results signal an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the presence of the Pomeranchuk effect on the metallic side. Our results are consistent with the universal critical theory of a continuous MIT from a Landau Fermi liquid to a nonmagnetic Mott insulator in two dimensions.