Do you want to publish a course? Click here

Symmetry Enriched Fracton Phases from Supersolid Duality

173   0   0.0 ( 0 )
 Added by Michael Pretko
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recently established duality between elasticity of crystals and a fracton tensor gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics of the underlying atoms. We thereby derive a hybrid vector-tensor gauge dual of a supersolid, which features both crystalline and superfluid order. The gauge dual describes a fracton state of matter with full dipole mobility endowed by the superfluid order, as governed by mutual axion electrodynamics between the fracton and vortex sectors of the theory, with an associated generalized Witten effect. Vortex condensation restores U(1) symmetry, confines dipoles to be subdimensional (recovering the dislocation glide constraint of a commensurate quantum crystal), and drives a phase transition between two distinct fracton phases. Meanwhile, condensation of elementary fracton dipoles and charges, respectively, provide a gauge dual description of the super-hexatic and ordinary superfluid. Consistent with conventional wisdom, in the absence of crystalline order, U(1)-symmetric phases are prohibited at zero temperature via a mechanism akin to deconfined quantum criticality.



rate research

Read More

Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$D SPTs, and strong SSPTs, which cannot. We identify signatures of strong phases, and show by explicit construction that such phases exist. A classification of strong phases is presented for an arbitrary finite abelian group. Finally, we show that fracton orders realizable via $p$-string condensation are dual to weak SSPTs, while strong SSPTs do not admit such a realization.
We formulate a fracton-elasticity duality for twisted moire superlattices, taking into account that they are incommensurate crystals with dissipative phason dynamics. From a dual tensor-gauge formulation, as compared to standard crystals, we identify twice the number of conserved charges that describe topological lattice defects, namely, disclinations and a new type of defect that we dub discompressions. The key implication of these conservation laws is that both glide and climb motions of lattice dislocations are suppressed, indicating that dislocation networks may become exceptionally stable. Our results also apply to other planar incommensurate crystals and quasicrystals.
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformations. We argue that for onsite unitary symmetries, our construction realizes all SETs free of anomaly, as long as the underlying topological order itself can be realized with a commuting-projector Hamiltonian. We further extend the construction to anti-unitary symmetries (e.g. time-reversal symmetry), mirror-reflection symmetries, and to anomalous SETs on the surface of three-dimensional symmetry-protected topological phases. Mathematically, our construction naturally leads to a generalization of group extensions of unitary fusion categories to anti-unitary symmetries.
In the study of three-dimensional gapped models, two-dimensional gapped states should be considered as a free resource. This is the basic idea underlying the notion of `foliated fracton order proposed in Phys. Rev. X 8, 031051 (2018). We have found that many of the known type I fracton models, although they appear very different, have the same foliated fracton order, known as `X-cube order. In this paper, we identify three-dimensional fracton models with different kinds of foliated fracton order. Whereas the X-cube order corresponds to the gauge theory of a simple paramagnet with subsystem planar symmetry, the novel orders correspond to twist
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا