No Arabic abstract
We consider some classical and quantum approximate optimization algorithms with bounded depth. First, we define a class of local classical optimization algorithms and show that a single step version of these algorithms can achieve the same performance as the single step QAOA on MAX-3-LIN-2. Second, we show that this class of classical algorithms generalizes a class previously considered in the literature, and also that a single step of the classical algorithm will outperform the single-step QAOA on all triangle-free MAX-CUT instances. In fact, for all but $4$ choices of degree, existing single-step classical algorithms already outperform the QAOA on these graphs, while for the remaining $4$ choices we show that the generalization here outperforms it. Finally, we consider the QAOA and provide strong evidence that, for any fixed number of steps, its performance on MAX-3-LIN-2 on bounded degree graphs cannot achieve the same scaling as can be done by a class of global classical algorithms. These results suggest that such local classical algorithms are likely to be at least as promising as the QAOA for approximate optimization.
We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an $n$-qubit product state $|vrangle$ with mean energy $e_0=langle v|H|vrangle$ and variance $mathrm{Var}=langle v|(H-e_0)^2|vrangle$, and outputs a state with an energy that is lower than $e_0$ by an amount proportional to $mathrm{Var}^2/n$. In a typical case, we have $mathrm{Var}=Omega(n)$ and the energy improvement is proportional to the number of edges in the graph. When applied to an initial random product state, we recover and generalize the performance guarantees of known algorithms for bounded-occurrence classical constraint satisfaction problems. We extend our results to $k$-local Hamiltonians and entangled initial states.
We consider classical and quantum algorithms which have a duality property: roughly, either the algorithm provides some nontrivial improvement over random or there exist many solutions which are significantly worse than random. This enables one to give guarantees that the algorithm will find such a nontrivial improvement: if few solutions exist which are much worse than random, then a nontrivial improvement is guaranteed. The quantum algorithm is based on a sudden of a Hamiltonian; while the algorithm is general, we analyze it in the specific context of MAX-$K$-LIN$2$, for both even and odd $K$. The classical algorithm is a dequantization of this algorithm, obtaining the same guarantee (indeed, some results which are only conjectured in the quantum case can be proven here); however, the quantum point of view helps in analyzing the performance of the classical algorithm and might in some cases perform better.
Quantum computers can exploit a Hilbert space whose dimension increases exponentially with the number of qubits. In experiment, quantum supremacy has recently been achieved by the Google team by using a noisy intermediate-scale quantum (NISQ) device with over 50 qubits. However, the question of what can be implemented on NISQ devices is still not fully explored, and discovering useful tasks for such devices is a topic of considerable interest. Hybrid quantum-classical algorithms are regarded as well-suited for execution on NISQ devices by combining quantum computers with classical computers, and are expected to be the first useful applications for quantum computing. Meanwhile, mitigation of errors on quantum processors is also crucial to obtain reliable results. In this article, we review the basic results for hybrid quantum-classical algorithms and quantum error mitigation techniques. Since quantum computing with NISQ devices is an actively developing field, we expect this review to be a useful basis for future studies.
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square lattice, and (iv) the Z_2 lattice gauge theory on a three-dimensional square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced in [Van den Nest et al., Phys. Rev. A 80, 052334 (2009)] and extended here.
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study their mutual relationships. Additionally, we prove that quantum query complexity of distinguishing two probability distributions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical query complexity for any pair of distributions. The results are obtained by using the adversary method for state-generating input oracles and for distinguishing probability distributions on input strings.