Do you want to publish a course? Click here

SUPERB: Speech processing Universal PERformance Benchmark

108   0   0.0 ( 0 )
 Added by Shu-Wen Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing.



rate research

Read More

Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human speech that is used to train speech recognizers. The multi-speaker speech synthesis architecture can learn latent embedding spaces of prosody, speaker and style variations derived from input acoustic representations thereby allowing for manipulation of the synthesized speech. In this paper, we evaluate the feasibility of enhancing speech recognition performance using speech synthesis using two corpora from different domains. We explore algorithms to provide the necessary acoustic and lexical diversity needed for robust speech recognition. Finally, we demonstrate the feasibility of this approach as a data augmentation strategy for domain-transfer. We find that improvements to speech recognition performance is achievable by augmenting training data with synthesized material. However, there remains a substantial gap in performance between recognizers trained on human speech those trained on synthesized speech.
Speech as a natural signal is composed of three parts - visemes (visual part of speech), phonemes (spoken part of speech), and language (the imposed structure). However, video as a medium for the delivery of speech and a multimedia construct has mostly ignored the cognitive aspects of speech delivery. For example, video applications like transcoding and compression have till now ignored the fact how speech is delivered and heard. To close the gap between speech understanding and multimedia video applications, in this paper, we show the initial experiments by modelling the perception on visual speech and showing its use case on video compression. On the other hand, in the visual speech recognition domain, existing studies have mostly modeled it as a classification problem, while ignoring the correlations between views, phonemes, visemes, and speech perception. This results in solutions which are further away from how human perception works. To bridge this gap, we propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding. We conduct experiments on three public visual speech recognition datasets. The experimental results show that our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate. Moreover, we show that there is a strong correlation between our models understanding of multi-view speech and the human perception. This characteristic benefits downstream applications such as video compression and streaming where a significant number of less important frames can be compressed or eliminated while being able to maximally preserve human speech understanding with good user experience.
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representations is far more effective and efficient for translation than traditional frame-level speech features. Specifically, we generate phoneme labels for speech frames and average consecutive frames with the same label to create shorter, higher-level source sequences for translation. We see improvements of up to 5 BLEU on both our high and low resource language pairs, with a reduction in training time of 60%. Our improvements hold across multiple data sizes and two language pairs.
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating the speech translation research for NLP researchers and building reliable benchmarks for this field. It provides step-by-step recipes for feature extraction, data preprocessing, distributed training, and evaluation. In this paper, we will introduce the framework design of NeurST and show experimental results for different benchmark datasets, which can be regarded as reliable baselines for future research. The toolkit is publicly available at https://github.com/bytedance/neurst/ and we will continuously update the performance of NeurST with other counterparts and studies at https://st-benchmark.github.io/.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا