Do you want to publish a course? Click here

Turbulent rotating convection confined in a slender cylinder: the sidewall circulation

261   0   0.0 ( 0 )
 Added by Rudie Kunnen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent studies of rotating Rayleigh-Benard convection at high rotation rates and strong thermal forcing have shown a significant discrepancy in total heat transport between experiments on a confined cylindrical domain on the one hand and simulations on a laterally unconfined periodic domain on the other. This paper addresses this discrepancy using direct numerical simulations on a cylindrical domain. An analysis of the flow field reveals a region of enhanced convection near the wall, the sidewall circulation. The sidewall circulation rotates slowly within the cylinder in anticyclonic direction. It has a convoluted structure, illustrated by mean flow fields in horizontal cross-sections of the flow where instantaneous snapshots are compensated for the orientation of the sidewall circulation before averaging. Through separate analysis of the sidewall region and the inner bulk flow, we find that for higher values of the thermal forcing the heat transport in the inner part of the cylindrical domain, outside the sidewall circulation region, coincides with the heat transport on the unconfined periodic domain. Thus the sidewall circulation accounts for the differences in heat transfer between the two considered domains, while in the bulk the turbulent heat flux is the same as that of a laterally unbounded periodic domain. Therefore, experiments, with their inherent confinement, can still provide turbulence akin to the unbounded domains of simulations, and at more extreme values of the governing parameters for thermal forcing and rotation. We also provide experimental evidence for the existence of the sidewall circulation that is in close agreement with the simulation results.



rate research

Read More

In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC amplitude can lead to extinction of the LSC (a cessation event), followed by the re-emergence of another LSC with a different (random) azimuthal orientation. We extend previous models of the LSC dynamics to include momentum and thermal diffusion in the azimuthal plane, and calculate the tails of the probability distributions of both the amplitude and azimuthal angle. Our analytical results are in very good agreement with experimental data.
The effect of rotation on the boundary layers (BLs) in a Rayleigh-Benard (RB) system at a relatively low Rayleigh number, i.e. $Ra = 4times10^7$, is studied for different Pr by direct numerical simulations and the results are compared with laminar BL theory. In this regime we find a smooth onset of the heat transfer enhancement as function of increasing rotation rate. We study this regime in detail and introduce a model based on the Grossmann-Lohse theory to describe the heat transfer enhancement as function of the rotation rate for this relatively low Ra number regime and weak background rotation $Rogtrsim 1$. The smooth onset of heat transfer enhancement observed here is in contrast to the sharp onset observed at larger $Ra gtrsim 10^8$ by Stevens {it{et al.}} [Phys. Rev. Lett. {bf{103}}, 024503, 2009], although only a small shift in the Ra-Ro-Pr phase space is involved.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr approx0.8$), the Large Scale Circulation (LSC) is suppressed and a Boundary Zonal Flow (BZF) develops near the sidewall, characterized by a bimodal PDF of the temperature, cyclonic fluid motion, and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($>60%$) of the total heat transport for $Pr < 1$ but decreases rather abruptly for larger $Pr$ to about $35%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent RBC in containers of different $Gamma$ and in a broad range of $Pr$ and $Ra$. Direct numerical simulations for $0.1 leq Pr leq 12.3$, $10^7 leq Ra leq 5times10^{9}$, $10^{5} leq 1/Ek leq 10^{7}$ and $Gamma$ = 1/3, 1/2, 3/4, 1 and 2 show that the BZF width $delta_0$ scales with the Rayleigh number $Ra$ and Ekman number $Ek$ as $delta_0/H sim Gamma^{0} Pr^{{-1/4, 0}} Ra^{1/4} Ek^{2/3}$ (${Pr<1, Pr>1}$) and the drift frequency as $omega/Omega sim Gamma^{0} Pr^{-4/3} Ra Ek^{5/3}$, where $H$ is the cell height and $Omega$ the angular rotation rate. The mode number of the BZF is 1 for $Gamma lesssim 1$ and $2 Gamma$ for $Gamma$ = {1,2} independent of $Ra$ and $Pr$. The BZF is quite reminiscent of wall mode states in rotating convection.
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Benard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a polynomial fit to the azimuthal temperature or azimuthal vertical velocity profile measured with the probes. We study the LSC in Gamma=D/L=1/2 and Gamma=1 samples, where D is the diameter and L the height. For Pr=6.4 in an aspect ratio Gamma=1 sample at $Ra=1times10^8$ and $5times10^8$ the obtained LSC orientation is the same, irrespective of whether the data of only 8 or all 64 probes per horizontal plane are considered. In a Gamma=1/2 sample with $Pr=0.7$ at $Ra=1times10^8$ the influence of plumes on the azimuthal temperature and azimuthal vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow the apparent LSC orientation obtained using a cosine fit can result in a misinterpretation of the character of the large-scale flow. We introduce the relative LSC strength, which we define as the ratio between the energy in the first Fourier mode and the energy in all modes that can be determined from the azimuthal temperature and azimuthal vertical velocity profiles, to further quantify the large-scale flow. For $Ra=1times10^8$ we find that this relative LSC strength is significantly lower in a Gamma=1/2 sample than in a Gamma=1 sample, reflecting that the LSC is much more pronounced in a Gamma=1 sample than in a Gamma=1/2 sample. The determination of the relative LSC strength can be applied directly to available experimental data to study high Rayleigh number thermal convection and rotating RB convection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا