Do you want to publish a course? Click here

A stabilization mechanism for excited fermion-boson stars

139   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study numerically the nonlinear stability of {it excited} fermion-boson stars in spherical symmetry. Such compound hypothetical stars, composed by fermions and bosons, are gravitationally bound, regular, and static configurations described within the coupled Einstein-Klein-Gordon-Euler theoretical framework. The excited configurations are characterized by the presence in the radial profile of the (complex, massive) scalar field -- the bosonic piece -- of at least one node across the star. The dynamical emergence of one such configuration from the accretion of a cloud of scalar field onto an already-formed neutron star, was numerically revealed in our previous investigation. Prompted by that finding we construct here equilibrium configurations of excited fermion-boson stars and study their stability properties using numerical-relativity simulations. In addition, we also analyze their dynamical formation from generic, constraint-satisfying initial data. Contrary to purely boson stars in the excited state, which are known to be generically unstable, our study reveals the appearance of a cooperative stabilization mechanism between the fermionic and bosonic constituents of those excited-state mixed stars. While similar examples of stabilization mechanisms have been recently discussed in the context of $ell-$boson stars and multi-field, multi-frequency boson stars, our results seem to indicate that the stabilization mechanism is a purely gravitational effect and does not depend on the type of matter of the companion star.



rate research

Read More

Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be sensitive probes of its presence. These compact stars with a dark matter component can be modeled by a perfect fluid minimally coupled to a complex scalar field (representing a bosonic dark matter component), resulting in objects known as fermion-boson stars. We have performed the dynamical evolution of these stars in order to analyze their stability, and to study their spectrum of normal modes, which may reveal the amount of dark matter in the system. Their stability analysis shows a structure similar to that of an isolated (fermion or boson) star, with equilibrium configurations either laying on the stable or on the unstable branch. The analysis of the spectrum of normal modes indicates the presence of new oscillation modes in the fermionic part of the star, which result from the coupling to the bosonic component through the gravity.
Scalar bosonic stars (BSs) stand out as a multi-purpose model of exotic compact objects. We enlarge the landscape of such (asymptotically flat, stationary, everywhere regular) objects by considering multiple fields (possibly) with different frequencies. This allows for new morphologies ${it and}$ a stabilization mechanism for different sorts of unstable BSs. First, any odd number of complex fields, yields a continuous family of BSs departing from the spherical, equal frequency, $ell-$BSs. As the simplest illustration, we construct the $ell$ = ${it 1}$ ${it BSs}$ ${it family}$, that includes several single frequency solutions, including even parity (such as spinning BSs and a toroidal, static BS) and odd parity (a dipole BS) limits. Second, these limiting solutions are dynamically unstable, but can be stabilized by a ${it hybrid}$-$ell$ construction: adding a sufficiently large fundamental $ell=0$ BS of another field, with a different frequency. Evidence for this dynamical robustness is obtained by non-linear numerical simulations of the corresponding Einstein-(complex, massive) Klein-Gordon system, both in formation and evolution scenarios, and a suggestive correlation between stability and energy distribution is observed. Similarities and differences with vector BSs are anticipated.
Gravitationally bound structures composed by fermions and scalar particles known as fermion-boson stars are regular and static configurations obtained by solving the coupled Einstein-Klein-Gordon-Euler (EKGE) system. In this work, we discuss one possible scenario through which these fermion-boson stars may form by solving numerically the EKGE system under the simplifying assumption of spherical symmetry. Our initial configurations assume an already existing neutron star surrounded by an accreting cloud of a massive and complex scalar field. The results of our simulations show that once part of the initial scalar field is expelled via gravitational cooling the system gradually oscillates around an equilibrium configuration that is asymptotically consistent with a static solution of the system. The formation of fermion-boson stars for large positive values of the coupling constant in the self-interaction term of the scalar-field potential reveal the presence of a node in the scalar field. This suggests that a fermionic core may help stabilize configurations with nodes in the bosonic sector, as happens for purely boson stars in which the ground state and the first excited state coexist.
We present compact Q-balls in an (Anti-)de Sitter background in D dimensions, obtained with a V-shaped potential of the scalar field. Beyond critical values of the cosmological constant compact Q-shells arise. By including the gravitational back-reaction, we obtain boson stars and boson shells with (Anti-)de Sitter asymptotics. We analyze the physical properties of these solutions and determine their domain of existence. In four dimensions we address some astrophysical aspects.
We construct boson stars in (4+1)-dimensional Gauss-Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate these in detail. While the thick wall limit is independent of the value of the Gauss-Bonnet coupling, we find that the spiraling behaviour characteristic for boson stars in standard Einstein gravity disappears for large enough values of the Gauss-Bonnet coupling. Our results show that in this case the scalar field can not have arbitrarily high values at the center of the boson star and that it is hence impossible to reach the thin wall limit. Moreover, for large enough Gauss-Bonnet coupling we find a unique relation between the mass and the radius (qualitatively similar to those of neutron stars) which is not present in the Einstein gravity limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا