Do you want to publish a course? Click here

On Feature Decorrelation in Self-Supervised Learning

126   0   0.0 ( 0 )
 Added by Wenxiao Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In self-supervised representation learning, a common idea behind most of the state-of-the-art approaches is to enforce the robustness of the representations to predefined augmentations. A potential issue of this idea is the existence of completely collapsed solutions (i.e., constant features), which are typically avoided implicitly by carefully chosen implementation details. In this work, we study a relatively concise framework containing the most common components from recent approaches. We verify the existence of complete collapse and discover another reachable collapse pattern that is usually overlooked, namely dimensional collapse. We connect dimensional collapse with strong correlations between axes and consider such connection as a strong motivation for feature decorrelation (i.e., standardizing the covariance matrix). The gains from feature decorrelation are verified empirically to highlight the importance and the potential of this insight.

rate research

Read More

We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard BN, where the statistics are computed within each batch, EMAN, used in the teacher, updates its statistics by exponential moving average from the BN statistics of the student. This design reduces the intrinsic cross-sample dependency of BN and enhances the generalization of the teacher. EMAN improves strong baselines for self-supervised learning by 4-6/1-2 points and semi-supervised learning by about 7/2 points, when 1%/10% supervised labels are available on ImageNet. These improvements are consistent across methods, network architectures, training duration, and datasets, demonstrating the general effectiveness of this technique. The code is available at https://github.com/amazon-research/exponential-moving-average-normalization.
While contrastive approaches of self-supervised learning (SSL) learn representations by minimizing the distance between two augmented views of the same data point (positive pairs) and maximizing views from different data points (negative pairs), recent emph{non-contrastive} SSL (e.g., BYOL and SimSiam) show remarkable performance {it without} negative pairs, with an extra learnable predictor and a stop-gradient operation. A fundamental question arises: why do these methods not collapse into trivial representations? We answer this question via a simple theoretical study and propose a novel approach, DirectPred, that emph{directly} sets the linear predictor based on the statistics of its inputs, without gradient training. On ImageNet, it performs comparably with more complex two-layer non-linear predictors that employ BatchNorm and outperforms a linear predictor by $2.5%$ in 300-epoch training (and $5%$ in 60-epoch). DirectPred is motivated by our theoretical study of the nonlinear learning dynamics of non-contrastive SSL in simple linear networks. Our study yields conceptual insights into how non-contrastive SSL methods learn, how they avoid representational collapse, and how multiple factors, like predictor networks, stop-gradients, exponential moving averages, and weight decay all come into play. Our simple theory recapitulates the results of real-world ablation studies in both STL-10 and ImageNet. Code is released https://github.com/facebookresearch/luckmatters/tree/master/ssl.
Efficient exploration is a long-standing problem in sensorimotor learning. Major advances have been demonstrated in noise-free, non-stochastic domains such as video games and simulation. However, most of these formulations either get stuck in environments with stochastic dynamics or are too inefficient to be scalable to real robotics setups. In this paper, we propose a formulation for exploration inspired by the work in active learning literature. Specifically, we train an ensemble of dynamics models and incentivize the agent to explore such that the disagreement of those ensembles is maximized. This allows the agent to learn skills by exploring in a self-supervised manner without any external reward. Notably, we further leverage the disagreement objective to optimize the agents policy in a differentiable manner, without using reinforcement learning, which results in a sample-efficient exploration. We demonstrate the efficacy of this formulation across a variety of benchmark environments including stochastic-Atari, Mujoco and Unity. Finally, we implement our differentiable exploration on a real robot which learns to interact with objects completely from scratch. Project videos and code are at https://pathak22.github.io/exploration-by-disagreement/
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign the auxiliary task with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency. However, abundant information in self-supervised auxiliary tasks has been disregarded, since the representation learning part and the decision-making part are separated. To sufficiently utilize information in the auxiliary task, we present a simple yet effective idea to employ self-supervised loss as an intrinsic reward, called Intrinsically Motivated Self-Supervised learning in Reinforcement learning (IM-SSR). We formally show that the self-supervised loss can be decomposed as exploration for novel states and robustness improvement from nuisance elimination. IM-SSR can be effortlessly plugged into any reinforcement learning with self-supervised auxiliary objectives with nearly no additional cost. Combined with IM-SSR, the previous underlying algorithms achieve salient improvements on both sample efficiency and generalization in various vision-based robotics tasks from the DeepMind Control Suite, especially when the reward signal is sparse.
We approach self-supervised learning of image representations from a statistical dependence perspective, proposing Self-Supervised Learning with the Hilbert-Schmidt Independence Criterion (SSL-HSIC). SSL-HSIC maximizes dependence between representations of transform

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا