Do you want to publish a course? Click here

Scalar-tensor mixed polarization search of gravitational waves

401   0   0.0 ( 0 )
 Added by Hiroki Takeda
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

An additional scalar degree of freedom for a gravitational wave is often predicted in theories of gravity beyond general relativity and can be used for a model-agnostic test of gravity. In this letter, we report the first direct search for the scalar-tensor mixed polarization modes of gravitational waves from compact binaries in a strong regime of gravity by analyzing the data of GW170814 and GW170817, which are the merger events of binary black holes and binary neutron stars, respectively. Consequently, we obtain the constraints on the ratio of scalar-mode amplitude to tensor-mode amplitude: $lesssim 0.18$ for GW170814 and $lesssim 0.069$ for GW170817, which are the strongest constraints obtained so far on the presence of the scalar polarization in a strong regime of gravity.



rate research

Read More

In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the interaction between the matter and vector field in the theory leads to two additional transverse polarization modes. By making use of the polarization content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method. Besides, the relaxed field equation for the modified gravity in question is derived by using the Landau-Lifshitz formalism suitable to systems with non-negligible self-gravity.
The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures from General Relativity, it is essential to analyse, in a modified gravity setting, how GWs propagate through a perturbed cosmological space-time. Working within the framework of geometrical optics, we develop tools to address this topic for a broad class of scalar-tensor theories, including scenarios with non-minimal, derivative couplings between scalar and tensor modes. We determine the corresponding evolution equations for the GW amplitude and polarization tensor. The former satisfies a generalised evolution equation that includes possible effects due to a variation of the effective Planck scale; the latter can fail to be parallely transported along GW geodesics unless certain conditions are satisfied. We apply our general formulas to specific scalar-tensor theories with unit tensor speed, and then focus on GW propagation on a perturbed space-time. We determine corrections to standard formulas for the GW luminosity distance and for the evolution of the polarization tensor, which depend both on modified gravity and on the effects of cosmological perturbations. Our results can constitute a starting point to disentangle among degeneracies from different sectors that can influence GW propagation through cosmological space-times.
192 - Dario Bettoni 2016
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
82 - F.Fucito 2000
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
In general relativity (GR), gravitational waves (GWs) propagate the well-known plus and cross polarization modes which are the signature of a massless spin-2 field. However, diffraction of GWs caused by intervening objects along the line of sight can cause the apparent rise of additional polarizations due to GW-curvature interactions. In this paper, we continue the analysis by two of the authors of the present article, on lensing of gravitational waves beyond geometric optics. In particular, we calculate the lensing effect caused by a point-like lens, in the regime where its Schwarzschild radius $R_s$ is much smaller than the wavelength $lambda$ of the signal, itself smaller than the impact parameter $b$. In this case, the curvature of spacetime induces distortions in the polarization of the wave such that effective scalar and vector polarizations may appear. We find that the amplitude of these apparent non-GR polarizations is suppressed by a factor $R_slambda/b^2$ with respect to the amplitude of the GR-like tensor modes. We estimate the probability to develop these extra polarization modes for a nearly monochromatic GW in the Pulsar Timing Arrays band traveling through a distribution of galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا