No Arabic abstract
The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures from General Relativity, it is essential to analyse, in a modified gravity setting, how GWs propagate through a perturbed cosmological space-time. Working within the framework of geometrical optics, we develop tools to address this topic for a broad class of scalar-tensor theories, including scenarios with non-minimal, derivative couplings between scalar and tensor modes. We determine the corresponding evolution equations for the GW amplitude and polarization tensor. The former satisfies a generalised evolution equation that includes possible effects due to a variation of the effective Planck scale; the latter can fail to be parallely transported along GW geodesics unless certain conditions are satisfied. We apply our general formulas to specific scalar-tensor theories with unit tensor speed, and then focus on GW propagation on a perturbed space-time. We determine corrections to standard formulas for the GW luminosity distance and for the evolution of the polarization tensor, which depend both on modified gravity and on the effects of cosmological perturbations. Our results can constitute a starting point to disentangle among degeneracies from different sectors that can influence GW propagation through cosmological space-times.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
We study the bounce and cyclicity realization in the framework of new gravitational scalar-tensor theories. In these theories the Lagrangian contains the Ricci scalar and its first and second derivatives, in a specific combination that makes them free of ghosts, and transformed into the Einstein frame they are proved to be a subclass of bi-scalar extensions of general relativity. We present analytical expressions for the bounce requirements, and we examine the necessary qualitative behavior of the involved functions that can give rise to a given scale factor. Having in mind these qualitative forms, we reverse the procedure and we construct suitable simple Lagrangian functions that can give rise to a bounce or cyclic scale factor.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations of motion, we derive conditions for the absence of ghosts and Laplacian instabilities associated with tensor, vector, and scalar perturbations at linear order. This general result is applied to the computation of the primordial tensor power spectrum generated during inflation as well as to the speed of gravity relevant to dark energy. We also construct a concrete inflationary model in which a temporal vector component $A_0$ contributes to the dynamics of cosmic acceleration besides a scalar field $phi$ through their kinetic mixings. In this model, we show that all the stability conditions of perturbations can be consistently satisfied during inflation and subsequent reheating.