No Arabic abstract
We investigate the dynamic evolution and thermodynamic process of a driven quantum system immersed in a finite-temperature heat bath. A Born-Markovian quantum master equation is formally derived for the time-dependent system with discrete energy levels. This quantum master equation can be applied to situations with a broad range of driving speeds and bath temperatures and thus be used to study the finite-time quantum thermodynamics even when nonadiabatic transition and dissipation coexist. The dissipative Landau-Zener model is analyzed as an example. The population evolution and transition probability of the model reveal the importance of the competition between driving and dissipation beyond the adiabatic regime. Moreover, local maximums of irreversible entropy production occur at intermediate sweep velocity and finite temperature, which the low-dissipation model cannot describe.
One of the fundamental physical limits on the speed of time evolution of a quantum state is known in the form of the celebrated Mandelshtam-Tamm inequality. This inequality gives an answer to the question on how fast an isolated quantum system can evolve from its initial state to an orthogonal one. In its turn, the Fleming bound is an extension of the Mandelshtam-Tamm inequality that gives an optimal speed bound for the evolution between non-orthogonal initial and final states. In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution. By using the concept of maximal angle between subspaces we derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on near-term quantum hardware. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using an adaptation of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantums hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work shows that the dynamics of open quantum systems can be efficiently simulated on near-term quantum hardware.
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.
In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|psi|^2$ distribution on a coarse-grained level. We analyze the relaxation of nonequilibrium initial distributions for a system of coupled one-dimensional harmonic oscillators in which the coupling depends explicitly on time through numerical simulations, focusing in the influence of different parameters such as the number of modes, the coarse-graining length and the coupling constant. We show that in general the system studied here tends to equilibrium, but the relaxation can be retarded depending on the values of the parameters, particularly to the one related to the strength of the interaction. Possible implications on the detection of relic nonequilibrium systems are discussed.
Quantum mechanics establishes a fundamental bound for the minimum evolution time between two states of a given system. Known as the quantum speed limit (QSL), it is a useful tool in the context of quantum control, where the speed of some control protocol is usually intended to be as large as possible. While QSL expressions for time-independent hamiltonians have been well studied, the time-dependent regime has remained somewhat unexplored, albeit being usually the relevant problem to be compared with when studying systems controlled by external fields. In this paper we explore the relation between optimal times found in quantum control and the QSL bound, in the (relevant) time-dependent regime, by discussing the ubiquitous two-level Landau-Zener type hamiltonian.