No Arabic abstract
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on near-term quantum hardware. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using an adaptation of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantums hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work shows that the dynamics of open quantum systems can be efficiently simulated on near-term quantum hardware.
Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
The road to computing on quantum devices has been accelerated by the promises that come from using Shors algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as O(n^{5}d), where n is the bit-length of the number to be factorized and $d$ is the depth of the circuit. We use a single layer of entangling gates to factorize several numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the methods performance by implementing it on the IBMQ Lima hardware.
Electron transport in realistic physical and chemical systems often involves the non-trivial exchange of energy with a large environment, requiring the definition and treatment of open quantum systems. Because the time evolution of an open quantum system employs a non-unitary operator, the simulation of open quantum systems presents a challenge for universal quantum computers constructed from only unitary operators or gates. Here we present a general algorithm for implementing the action of any non-unitary operator on an arbitrary state on a quantum device. We show that any quantum operator can be exactly decomposed as a linear combination of at most four unitary operators. We demonstrate this method on a two-level system in both zero and finite temperature amplitude damping channels. The results are in agreement with classical calculations, showing promise in simulating non-unitary operations on intermediate-term and future quantum devices.
Quantum imaginary time evolution is a powerful algorithm to prepare ground states and thermal states on near-term quantum devices. However, algorithmic errors induced by Trotterization and local approximation severely hinder its performance. Here we propose a deep-reinforcement-learning-based method to steer the evolution and mitigate these errors. In our scheme, the well-trained agent can find the subtle evolution path where most algorithmic errors cancel out, enhancing the recovering fidelity significantly. We verified the validity of the method with the transverse-field Ising model and graph maximum cut problem. Numerical calculations and experiments on a nuclear magnetic resonance quantum computer illustrated the efficacy. The philosophy of our method, eliminating errors with errors, sheds new light on error reduction on near-term quantum devices.
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.