We perform a numerical analysis of mid-infrared photoluminescence emitted by praseodymium (III) doped chalcogenide selenide glass pumped at near-infrared wavelengths. The results obtained show that an effective inversion of level populations can be achieved using both 1480 nm and 1595 nm laser diodes. The rate of the spontaneous emission achieved when pumping at 1480 nm and 1595 nm is comparable to this achieved using the standard pumping wavelength of 2040 nm.
In this contribution a numerical model is developed to study the time dynamics of photoluminescence emitted by Tb3+ doped multimode chalcogenide-selenide glass fibers pumped by laser light at approximately 2 microns. The model consists of a set of partial differential equations (PDEs), which describe the temporal and spatial evolution of the photon density and level populations within the fiber. In order to solve numerically the PDEs a Method of Lines is applied. The modeling parameters are extracted from measurements and from data available in the literature. The numerical results obtained support experimental observations. In particular, the developed model reproduces the discrepancies that are observed between the photoluminescence decay curves obtained from different points along the fiber. The numerical analysis is also used to explain the source of these discrepancies.
In this contribution, a comprehensive experimental study of photoluminescence from Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples is discussed. The selenide-chalcogenide multimode fiber samples co-doped with 500 ppm of Pr3+ ions and 500 ppm of Dy3+ ions are prepared using conventional melt-quenching. The main objective of the study is the analysis of the pumping wavelength selection on the shape of the output spectrum. For this purpose, the Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples are illuminated at one end using pump lasers operating at the wavelengths of 1320 nm , 1511 nm and 1700 nm. The results obtained show that the Pr3+/Dy3+ ion co-doped selenide-chalcogenide multimode fiber emits photoluminescence spanning from 2000 nm to 6000 nm. Also it is demonstrated that, by varying the output power and wavelength of the pump sources, the spectral shape of the emitted luminescence can be modified to either reduce or enhance the contribution of radiation within a particular wavelength band. The presented results confirm that Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber is a good candidate for the realization of broadband spontaneous emission fiber sources with shaped output spectrum for the mid-infrared wavelength region.
This paper presents the progress in the fields of the modelling and design of lanthanide ion doped chalcogenide glass fiber lasers. It presents the laser cavity designs that have been developed in order to optimize the performance of lanthanide ion doped chalcogenide glass fiber lasers. Also various numerical algorithms that have been applied for the optimization of chalcogenide glass lasers are reviewed and compared. The comparison shows that a combination of less accurate but more robust algorithms with more accurate ones gives the most promising performance.
Semiconductor lasers capable of generating a vortex beam with a specific orbital angular momentum (OAM) order are highly attractive for applications ranging from nanoparticle manipulation, imaging and microscopy to fibre and quantum communications. In this work, an electrically pumped OAM laser operating at telecom wavelengths is fabricated by monolithically integrating an optical vortex emitter with a distributed feedback (DFB) laser on the same InGaAsP/InP epitaxial wafer. A single-step dry etching process is adopted to complete the OAM emitter, equipped with specially designed top gratings. The vortex beam emitted by the integrated laser is captured, and its OAM mode purity characterized. The electrically pumped OAM laser eliminates the external laser required by silicon- or silicon-on-insulator (SOI)-based OAM emitters, thus demonstrating great potential for applications in communication systems and quantum domain.
Experimental and theoretical studies of spectral properties of chalcogenide Ge-S and As-Ge-S glasses and fibers are performed. A broad infrared (IR) luminescence band which covers the 1.2-2.3~$mu$m range with a lifetime about 6~$mu$s is discovered. Similar luminescence is also present in optical fibers drawn from these glasses. Arsenic addition to Ge-S glass significantly enhances both its resistance to crystallization and the intensity of the luminescence. Computer modeling of Bi-related centers shows that interstitial Bi$^+$ ions adjacent to negatively charged S vacancies are most likely responsible for the IR luminescence.
S. Sujecki
,L. Sojka
,E. Beres-Pawlik
.
(2021)
.
"A study of MIR photoluminescence from Pr$^{3+}$ doped chalcogenide fibers pumped at near-infrared wavelengths"
.
Slawomir Sujecki
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا