Do you want to publish a course? Click here

Chern-Simons Invariants from Ensemble Averages

78   0   0.0 ( 0 )
 Added by Jacob Leedom
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We discuss ensemble averages of two-dimensional conformal field theories associated with an arbitrary indefinite lattice with integral quadratic form $Q$. We provide evidence that the holographic dual after the ensemble average is the three-dimensional Abelian Chern-Simons theory with kinetic term determined by $Q$. The resulting partition function can be written as a modular form, expressed as a sum over the partition functions of Chern-Simons theories on lens spaces. For odd lattices, the dual bulk theory is a spin Chern-Simons theory, and we identify several novel phenomena in this case. We also discuss the holographic duality prior to averaging in terms of Maxwell-Chern-Simons theories.

rate research

Read More

We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
We consider Chern-Simons theory for gauge group $G$ at level $k$ on 3-manifolds $M_n$ with boundary consisting of $n$ topologically linked tori. The Euclidean path integral on $M_n$ defines a quantum state on the boundary, in the $n$-fold tensor product of the torus Hilbert space. We focus on the case where $M_n$ is the link-complement of some $n$-component link inside the three-sphere $S^3$. The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level $k$ ($G= U(1)_k$) we give a general formula for the entanglement entropy associated to an arbitrary $(m|n-m)$ partition of a generic $n$-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod $k$) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod $k$). For $G = SU(2)_k$, we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a W-like entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have GHZ-like entanglement (i.e., tracing out one torus does lead to a separable state).
The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.
99 - Martin OLoughlin 1996
In the vicinity of points in Calabi-Yau moduli space where there are degenerating three-cycles the low energy effective action of type IIA string theory will contain significant contributions arising from membrane instantons that wrap around these three-cycles. We show that the world-volume description of these instantons is Chern-Simons theory.
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا