Do you want to publish a course? Click here

A neural anisotropic view of underspecification in deep learning

125   0   0.0 ( 0 )
 Added by Apostolos Modas
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The underspecification of most machine learning pipelines means that we cannot rely solely on validation performance to assess the robustness of deep learning systems to naturally occurring distribution shifts. Instead, making sure that a neural network can generalize across a large number of different situations requires to understand the specific way in which it solves a task. In this work, we propose to study this problem from a geometric perspective with the aim to understand two key characteristics of neural network solutions in underspecified settings: how is the geometry of the learned function related to the data representation? And, are deep networks always biased towards simpler solutions, as conjectured in recent literature? We show that the way neural networks handle the underspecification of these problems is highly dependent on the data representation, affecting both the geometry and the complexity of the learned predictors. Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.



rate research

Read More

Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in this task. However, most contrastive learning-based methods mostly rely on high-quality graph embedding and explore less on the relationships between different graph views. To deal with these deficiencies, we design a novel node-to-node Contrastive learning framework for Multi-view network Embedding (CREME), which mainly contains two contrastive objectives: Multi-view fusion InfoMax and Inter-view InfoMin. The former objective distills information from embeddings generated from different graph views, while the latter distinguishes different graph views better to capture the complementary information between them. Specifically, we first apply a view encoder to generate each graph view representation and utilize a multi-view aggregator to fuse these representations. Then, we unify the two contrastive objectives into one learning objective for training. Extensive experiments on three real-world datasets show that CREME outperforms existing methods consistently.
125 - Zezhi Shao , Yongjun Xu , Wei Wei 2021
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding methods either insufficiently model the local structure under specific semantic, or neglect the heterogeneity when aggregating information from it. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain versatile node embeddings. To address the problem, we propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (named MV-HetGNN) for heterogeneous graph embedding by introducing the idea of multi-view representation learning. The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations. Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.
168 - Sebastian Ruder 2017
Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses recent advances. In particular, it seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks.
ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain.
202 - Weixin Liang , James Zou 2020
Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters. The sheer size of these networks imposes a challenging computational burden during inference. Existing work focuses primarily on accelerating each forward pass of a neural network. Inspired by the group testing strategy for efficient disease testing, we propose neural group testing, which accelerates by testing a group of samples in one forward pass. Groups of samples that test negative are ruled out. If a group tests positive, samples in that group are then retested adaptively. A key challenge of neural group testing is to modify a deep neural network so that it could test multiple samples in one forward pass. We propose three designs to achieve this without introducing any new parameters and evaluate their performances. We applied neural group testing in an image moderation task to detect rare but inappropriate images. We found that neural group testing can group up to 16 images in one forward pass and reduce the overall computation cost by over 73% while improving detection performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا