No Arabic abstract
Reconfigurable optical systems are the object of continuing, intensive research activities, as they hold great promise for realizing a new generation of compact, miniaturized, and flexible optical devices. However, current reconfigurable systems often tune only a single state variable triggered by an external stimulus, thus, leaving out many potential applications. Here we demonstrate a reconfigurable multistate optical system enabled by phase transitions in vanadium dioxide (VO2). By controlling the phase-transition characteristics of VO2 with simultaneous stimuli, the responses of the optical system can be reconfigured among multiple states. In particular, we show a quadruple-state dynamic plasmonic display that responds to both temperature tuning and hydrogen-doping. Furthermore, we introduce an electron-doping scheme to locally control the phase-transition behavior of VO2, enabling an optical encryption device encoded by multiple keys. Our work points the way toward advanced multistate reconfigurable optical systems, which substantially outperform current optical devices in both breadth of capabilities and functionalities.
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe to be the first electrically reconfigurable nonvolatile metasurfaces based on O-PCMs. The O-PCM alloy used in the devices, Ge2Sb2Se4Te1 (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss, and a large reversible switching volume, enabling significantly enhanced light-matter interactions within the active O-PCM medium. Capitalizing on these favorable attributes, we demonstrated continuously tunable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.
The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
We propose a frequency selective light trapping scheme that enables the creation of more visually-transparent and yet simultaneously more efficient semitransparent solar cells. A nanoparticle scattering layer and photonic stack back reflector create a selective trapping effect by total internal reflection within a medium, increasing absorption of IR light. We propose a strong frequency selective scattering layer using spherical TiO2 nanoparticles with radius of 255 nm and area density of 1.1% in a medium with index of refraction of 1.5. Using detailed numerical simulations for this configuration, we find that it is possible to create a semitransparent silicon solar cell that has a Shockley Queisser efficiency of 12.0%pm0.4% with a visible transparency of 60.2%pm1.3%, 13.3%pm1.3 more visibly-transparent than a bare silicon cell at the same efficiency.
Full phase control of THz emitting quantum cascade laser (QCL) combs has recently been demonstrated, opening new perspectives for even the most demanding applications. In this framework, simplifying the set-ups for control of these devices will help to accelerate their spreading in many fields. We report a new way to control the emission frequencies of a THz QCL comb by small optical frequency tuning (SOFT), using a very simple experimental setup, exploiting the incoherent emission of an ordinary white light emitting diode. The slightly perturbative regime accessible in these condition allows tweaking the complex refractive index of the semiconductor without destabilizing the broadband laser gain. The SOFT actuator is characterized and compared to another actuator, the QCL driving current. The suitability of this additional degree of freedom for frequency and phase stabilization of a THz QCL comb is shown and perspectives are discussed.
Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic-photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo-optic or electro-optic modulation effects, resulting in a large footprint and high energy consumption. As a promising alternative, chalcogenide phase-change materials (PCMs) exhibit strong modulation in a static, self-holding fashion. Here, we demonstrate nonvolatile electrically reconfigurable photonic switches using PCM-clad silicon waveguides and microring resonators that are intrinsically compact and energy-efficient. With phase transitions actuated by in-situ silicon PIN heaters, near-zero additional loss and reversible switching with high endurance are obtained in a complementary metal-oxide-semiconductor (CMOS)-compatible process. Our work can potentially enable very large-scale general-purpose programmable integrated photonic processors.