Do you want to publish a course? Click here

Doubly robust capture-recapture methods for estimating population size

64   0   0.0 ( 0 )
 Added by Manjari Das
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Estimation of population size using incomplete lists (also called the capture-recapture problem) has a long history across many biological and social sciences. For example, human rights and other groups often construct partial and overlapping lists of victims of armed conflicts, with the hope of using this information to estimate the total number of victims. Earlier statistical methods for this setup either use potentially restrictive parametric assumptions, or else rely on typically suboptimal plug-in-type nonparametric estimators; however, both approaches can lead to substantial bias, the former via model misspecification and the latter via smoothing. Under an identifying assumption that two lists are conditionally independent given measured covariate information, we make several contributions. First, we derive the nonparametric efficiency bound for estimating the capture probability, which indicates the best possible performance of any estimator, and sheds light on the statistical limits of capture-recapture methods. Then we present a new estimator, and study its finite-sample properties, showing that it has a double robustness property new to capture-recapture, and that it is near-optimal in a non-asymptotic sense, under relatively mild nonparametric conditions. Next, we give a method for constructing confidence intervals for total population size from generic capture probability estimators, and prove non-asymptotic near-validity. Finally, we study our methods in simulations, and apply them to estimate the number of killings and disappearances attributable to different groups in Peru during its internal armed conflict between 1980 and 2000.



rate research

Read More

Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) methodology under the assumption that confounders are missing at random. Their approach considers a union of models in which any submodel has a parametric component while the remaining models are unrestricted. We show that while their estimating function is MR in theory, the possibility for multiply robust inference is complicated by the fact that parametric models for different components of the union model are not variation independent and therefore the MR property is unlikely to hold in practice. To address this, we propose an alternative transparent parametrization of the likelihood function, which makes explicit the model dependencies between various nuisance functions needed to evaluate the MR efficient score. The proposed method is genuinely doubly-robust (DR) in that it is consistent and asymptotic normal if one of two sets of modeling assumptions holds. We evaluate the performance and doubly robust property of the DR method via a simulation study.
76 - Jinghao Sun 2020
Capture-recapture (CRC) surveys are widely used to estimate the size of a population whose members cannot be enumerated directly. When $k$ capture samples are obtained, counts of unit captures in subsets of samples are represented naturally by a $2^k$ contingency table in which one element -- the number of individuals appearing in none of the samples -- remains unobserved. In the absence of additional assumptions, the population size is not point-identified. Assumptions about independence between samples are often used to achieve point-identification. However, real-world CRC surveys often use convenience samples in which independence cannot be guaranteed, and population size estimates under independence assumptions may lack empirical credibility. In this work, we apply the theory of partial identification to show that weak assumptions or qualitative knowledge about the nature of dependence between samples can be used to characterize a non-trivial set in which the true population size lies with high probability. We construct confidence sets for the population size under bounds on pairwise capture probabilities, and bounds on the highest order interaction term in a log-linear model using two methods: test inversion bootstrap confidence intervals, and profile likelihood confidence intervals. We apply these methods to recent survey data to estimate the number of people who inject drugs in Brussels, Belgium.
Population size estimation based on two sample capture-recapture type experiment is an interesting problem in various fields including epidemiology, pubic health, population studies, etc. The Lincoln-Petersen estimate is popularly used under the assumption that capture and recapture status of each individual is independent. However, in many real life scenarios, there is an inherent dependency between capture and recapture attempts which is not well-studied in the literature of the dual system or two sample capture-recapture method. In this article, we propose a novel model that successfully incorporates the possible causal dependency and provide corresponding estimation methodologies for the associated model parameters based on post-stratified two sample capture-recapture data. The superiority of the performance of the proposed model over the existing competitors is established through an extensive simulation study. The method is illustrated through analysis of some real data sets.
While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce two new selection criteria for bias reduction in estimating the functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies the double robustness property and thus is used to select the pair of learners that is nearest to fulfilling this property. We establish an oracle property for a multi-fold cross-validation version of the new selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study.
We present a new design and inference method for estimating population size of a hidden population best reached through a link-tracing design. The strategy involves the Rao-Blackwell Theorem applied to a sufficient statistic markedly different from the usual one that arises in sampling from a finite population. An empirical application is described. The result demonstrates that the strategy can efficiently incorporate adaptively selected members of the sample into the inference procedure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا