Do you want to publish a course? Click here

Cellular automata traffic flow model derived through the ultradiscrete limit of the correlated random walk

178   0   0.0 ( 0 )
 Added by Etsuo Segawa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we show that a generalization of the discrete Burgers equation can be obtained by a kind of discrete Cole--Hopf transformation to the discrete diffusion equation corresponding to the correlated random walk, which is also known as a generalization of the well known random walks. By applying the technique called ultradiscretization, we obtain the generalization of the ultradiscrete diffusion equation, the ultradiscrete Cole--Hopf transformation and the ultradiscrete Burgers equation. Moreover, we show that the resulting ultradiscrete Burgers equation yields cellular automata. The relationship of the ultradiscrete Burgers equation to the traffic flow is also discussed.



rate research

Read More

We present a new cellular automata model of vehicular traffic in cities by combining ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NaSch) model of highway traffic. The model exhibits a dynamical phase transition to a completely jammed phase at a critical density which depends on the time periods of the synchronized signals.
138 - Maurizio Serva 2014
In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance ever reached from the starting point (home). The behavior of the walker is at variance with respect to the simple symmetric random walk (SSRW) only when she is at this maximum distance, where, having the choice to move either farther or closer, she decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold and her behavior turns out to be super-diffusive, otherwise she is timorous and her behavior turns out to be sub-diffusive. The scaling behavior vary continuously from sub-diffusive (timorous) to super-diffusive (bold) according to a single parameter $gamma in R$. We investigate here the asymptotic properties of the bold case in the non ballistic region $gamma in [0,1/2]$, a problem which was left partially unsolved in cite{S}. The exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate martingales of the random walk and its hitting times.
468 - Fa Wang , Li Li , Jianming Hu 2008
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize it for different scenarios: usually mentioned flows on freeways and start-up flows at signalized intersections. The agreement between the empirical observations and the simulation results suggests the soundness of this new approach.
We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2^r, one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2^r, and, consequently, satisfy exact functional equations modulo 2^r. We sketch a possible physical interpretation of these functional equations modulo 2^r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries.
We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime one observes plateau formation in the fundamental diagram. The plateau value depends on the input-rate of cars at the on-ramp. The on-ramp acts as a local perturbation that separates the system into two regimes: A regime of free flow and another one where only jammed states exist. This phase separation is the reason for the plateau formation and implies a behaviour analogous to that of stationary defects. This analogy allows to perform very fast simulations of complex traffic networks with a large number of on- and off-ramps because one can parametrise on-ramps in an exceedingly easy way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا