No Arabic abstract
Various applications of superconducting materials require accounting of anisotropy of the current-carrying capacity relative to magnetic field direction - Ic({theta}). However, today there is no sufficiently comprehensive model that takes into account the anisotropy, therefore the angular dependences are usually not analysed, but only described using various mathematical formulas. As a result, the fitting parameters have no physical meaning and it is difficult to correlate the picture with the features of the microstructure. In this paper, we propose a method for analysing the critical current angular dependences based on the anisotropic pinning model. The applicability of this model for conventional superconducting Nb-Ti tapes with one peak in the Ic ({theta}) dependence is shown. The possibility of extending this model to analyse the angular dependences of HTS materials is discussed.
MgB2/Fe tapes with 2.5-15 at.% ZrB2 additions were prepared through the in situ powder-in-tube method. Compared to the pure tape, a significant improvement in the in-field critical current density Jc was observed, most notably for 10 at.% doping, while the critical temperature decreased slightly. At 4.2 K, the transport Jc for the 10 at.% doped sample increased by more than an order of magnitude than the undoped one in magnetic fields above 9 T. Nanoscale segregates or defects caused by the ZrB2 additions which act as effective flux pinning centers are proposed to be the main reason for the improved Jc field performance.
A significant enhancement of Jc and Hirr in MgB2 tapes has been achieved by the in situ powder-in-tube method utilizing hollow carbon spheres (HCS) as dopants. At 4.2 K, the transport Jc for the 850C sintered samples reached 3.1x10^4, and 1.4x10^4 A/cm^2 at 10 and 12 T, respectively, and were better than those of optimal nano-SiC doped tapes. Furthermore, the Hirr for doped sample was raised up to 16.8 T at 10 K due to the carbon substitution effect. The results demonstrate that HCS is one of the most promising dopants besides nano-carbon and SiC for the enhancement of current capacity for MgB2 in high fields.
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nano-patterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local-density-of-pinning-sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.
We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using large-scale time-dependent Ginzburg-Landau simulations for vortex dynamics.
The effect of the quality of starting powders on the microstructure and superconducting properties of in-situ processed Fe-sheathed MgB2 tapes has been investigated. Three different types of commercial atomized spherical magnesium powder and two different purities of amorphous boron powder were employed. When using the 10-micrometre magnesium as precursor powders, the Mg reacted with boron more uniformly and quickly, thus the uniformity of the fabricated MgB2 was improved and the grain size of the MgB2 was decreased, hence significant critical current density (Jc) enhancements were achieved for MgB2 tapes. Jc at 4.2 K for MgB2 tapes made from the 10 um Mg and high purity boron powders was at least a factor of ten higher than values measured for MgB2 samples made from all other starting powders. At 20 K, 5 T, the typical Jc values of the tapes were over 1.0x10^4 A/cm^2 and were much better than those of tape samples reported recently.