Do you want to publish a course? Click here

Entropy formula for systems with inducing schemes

79   0   0.0 ( 0 )
 Added by Jose Alves F.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We obtain entropy formulas for SRB measures with finite entropy given by inducing schemes. In the first part of the work, we obtain Pesin entropy formula for the class of noninvertible systems whose SRB measures are given by Gibbs-Markov induced maps. In the second part, we obtain Pesin entropy formula for invertible maps whose SRB measures given by Young sets, taking into account a classical compression technique along the stable direction that allows a reduction of the return map associated with a Young set to a Gibbs-Markov map. In both cases, we give applications of our main results to several classes of dynamical systems with singular sets, where the classical results by Ruelle and Pesin cannot be applied. We also present examples of systems with SRB measures given by inducing schemes for which Ruelle inequality does not hold.



rate research

Read More

77 - Yujun Zhu 2017
In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $mathbb{Z}^k$-actions which are generated by random compositions of the generators of $mathbb{Z}^k$-actions. Applying Pesins theory for commutative diffeomorphisms we obtain a measure-theoretic entropy formula of $C^{2}$ random $mathbb{Z}^k$-actions via the Lyapunov spectra of the generators. Some formulas and bounds of topological entropy for certain random $mathbb{Z}^k$(or $mathbb{Z}_+^k$ )-actions generated by more general maps, such as Lipschitz maps, continuous maps on finite graphs and $C^{1}$ expanding maps, are also obtained. Moreover, as an application, we give a formula of Friedlands entropy for certain $C^{2}$ $mathbb{Z}^k$-actions.
Metric entropies along a hierarchy of unstable foliations are investigated for $C^1$ diffeomorphisms with dominated splitting. The analogues of Ruelles inequality and Pesins formula, which relate the metric entropy and Lyapunov exponents in each hierarchy, are given.
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
Finite heat reservoir capacity and temperature fluctuations lead to modification of the well known canonical exponential weight factor. Requiring that the corrections least depend on the one-particle energy, we derive a deformed entropy, K(S). The resulting formula contains the Boltzmann-Gibbs, the Renyi and the Tsallis formulas as particular cases. For extreme large fluctuations (compared to the Gaussian case) a new, parameter-free entropy - probability relation emerges. This formula and the corresponding canonical equilibrium distribution are nearly Boltzmannian for high probability, but deviate from the classical result for low probability. In the extreme large fluctuation limit the canonical distribution resembles for low probability the cumulative Gompertz distribution.
Let $mathcal{F}$ be a $C^2$ random partially hyperbolic dynamical system. For the unstable foliation, the corresponding unstable metric entropy, unstable topological entropy and unstable pressure via the dynamics of $mathcal{F}$ on the unstable foliation are introduced and investigated. A version of Shannon-McMillan-Breiman Theorem for unstable metric entropy is given, and a variational principle for unstable pressure (and hence for unstable entropy) is obtained. Moreover, as an application of the variational principle, equilibrium states for the unstable pressure including Gibbs $u$-states are investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا