Do you want to publish a course? Click here

Entropy Formula for Random $mathbb{Z}^k$-actions

78   0   0.0 ( 0 )
 Added by Yujun Zhu
 Publication date 2017
  fields
and research's language is English
 Authors Yujun Zhu




Ask ChatGPT about the research

In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $mathbb{Z}^k$-actions which are generated by random compositions of the generators of $mathbb{Z}^k$-actions. Applying Pesins theory for commutative diffeomorphisms we obtain a measure-theoretic entropy formula of $C^{2}$ random $mathbb{Z}^k$-actions via the Lyapunov spectra of the generators. Some formulas and bounds of topological entropy for certain random $mathbb{Z}^k$(or $mathbb{Z}_+^k$ )-actions generated by more general maps, such as Lipschitz maps, continuous maps on finite graphs and $C^{1}$ expanding maps, are also obtained. Moreover, as an application, we give a formula of Friedlands entropy for certain $C^{2}$ $mathbb{Z}^k$-actions.



rate research

Read More

We study directional mean dimension of $mathbb{Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $mathbb{Z}^2$-action whose directional mean dimension (considered as a $[0,+infty]$-valued function on the torus) is not continuous. On the other hand, we prove that if a $mathbb{Z}^k$-action is continuum-wise expansive, then the values of its $(k-1)$-dimensional directional mean dimension are bounded. This is a generalization (with a view towards Meyerovitch and Tsukamotos theorem on mean dimension and expansive multiparameter actions) of a classical result due to Ma~ne: Any compact metrizable space admitting an expansive homeomorphism (with respect to a compatible metric) is finite-dimensional.
86 - Chunlin Liu , Leiye Xu 2021
In this paper, directional sequence entropy and directional Kronecker algebra for $mathbb{Z}^q$-systems are introduced. The relation between sequence entropy and directional sequence entropy are established. Meanwhile, direcitonal discrete spectrum systems and directional null systems are defined. It is shown that a $mathbb{Z}^q$-system has directional discrete spectrum if and only if it is directional null. Moreover, it turns out that a $mathbb{Z}^q$-system has directional discrete spectrum along $q$ linearly independent directions if and only if it has discrete spectrum.
We obtain a sufficient condition for a substitution ${mathbb Z}$-action to have pure singular spectrum in terms of the top Lyapunov exponent of the spectral cocycle introduced in arXiv:1802.04783 by the authors. It is applied to a family of examples, including those associated with self-similar interval exchange transformations.
57 - Yujun Zhu 2017
In this paper, two types of Lyapunov exponents: random Lyapunov exponents and directional Lyapunov exponents, and the corresponding entropies: random entropy and directional entropy, are considered for smooth $mathbb{Z}^k$-actions. The close relation among these quantities are investigated and the formulas of them are given via the Lyapunov exponents of the generators.
We study the problem of embedding arbitrary $mathbb{Z}^k$-actions into the shift action on the infinite dimensional cube $left([0,1]^Dright)^{mathbb{Z}^k}$. We prove that if a $mathbb{Z}^k$-action satisfies the marker property (in particular if it is a minimal system without periodic points) and if its mean dimension is smaller than $D/2$ then we can embed it in the shift on $left([0,1]^Dright)^{mathbb{Z}^k}$. The value $D/2$ here is optimal. The proof goes through signal analysis. We develop the theory of encoding $mathbb{Z}^k$-actions into band-limited signals and apply it to proving the above statement. Main technical difficulties come from higher dimensional phenomena in signal analysis. We overcome them by exploring analytic techniques tailored to our dynamical settings. The most important new idea is to encode the information of a tiling of the Euclidean space into a band-limited function which is constructed from another tiling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا