Do you want to publish a course? Click here

Highly sensitive spin-flop transition in antiferromagnetic van-der Waals material MPS3 (M = Ni and Mn)

71   0   0.0 ( 0 )
 Added by Rabindra Basnet
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent developments in two-dimensional (2D) magnetism have motivated the search for novel van-der Waals (vdWs) magnetic materials to explore new magnetic phenomenon in the 2D limit. Metal thiophosphates, MPX3, is a class of magnetic vdWs materials with antiferromagnetic (AFM) ordering persisting down to the atomically thin limit. The magnetism in this material family has been found to be highly dependent on the choice of transition metal M. In this work, we have synthesized the intermediate compounds Ni1-xMnxPS3 (0 < x < 1) and investigated their magnetic properties. Our study reveals that the variation of Ni and Mn content in Ni1-xMnxPS3 can efficiently tune the spin-flop transition, likely due to the modulation of the magnetic anisotropy. Such effective tunning offers a promising candidate to engineer 2D magnetism for future device applications.

rate research

Read More

Two-dimensional (2D) van der Waals ferromagnetic materials are emerging as promising candidates for applications in ultra-compact spintronic nanodevices, nanosensors, and information storage. Our recent discovery of the strong room temperature ferromagnetism in single layers of VSe2 grown on graphite or MoS2 substrate has opened new opportunities to explore these ultrathin magnets for such applications. In this paper, we present a new type of magnetic sensor that utilizes the single layer VSe2 film as a highly sensitive magnetic core. The sensor relies in changes in resonance frequency of the LC circuit composed of a soft ferromagnetic microwire coil that contains the ferromagnetic VSe2 film subject to applied DC magnetic fields. The sensitivity of the sensor reaches an extremely high value of 16x10^6 Hz/Oe, making it an excellent candidate for a wide range of magnetic sensing applications.
A comprehensive theoretical investigation on the field-driven reorientation transitions in uniaxial multilayers with antiferromagnetic coupling is presented. It is based on a complete survey of the one-dimensional solutions for the basic phenomenological (micromagnetic) model that describes the magnetic properties of finite stacks made from ferromagnetic layers coupled antiferromagnetically through spacer layers. The general structure of the phase diagrams is analysed. At a high ratio of uniaxial anisotropy to antiferromagnetic interlayer exchange, only a succession of collinear magnetic states is possible. With increasing field first-order (metamagnetic) transitions occur from the antiferromagnetic ground-state to a set of degenerate ferrimagnetic states and to the saturated ferromagnetic state. At low anisotropies, a first-order transition from the antiferromagnetic ground-state to an inhomogeneous spin-flop state occurs. Between these two regions, transitional magnetic phases occupy the range of intermediate anisotropies. Detailed and quantitative phase diagrams are given for the basic model of antiferromagnetic multilayer systems with N = 2 to 16 layers. The connection of the phase diagrams with the spin-reorientation transitions in bulk antiferromagnets is discussed. The limits of low anisotropy and large numbers of layers are analysed by two different representations of the magnetic energy, namely, in terms of finite chains of staggered vectors and in a general continuum form. It is shown that the phenomena widely described as ``surface spin-flop are driven only by the cut exchange interactions and the non-compensated magnetic moment at the surface layers of a stacked antiferromagnetic system.
Magnetic van der Waals (vdW) materials have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far magnetic vdW materials are mainly insulating or semiconducting, and none of them possesses a high electronic mobility - a property that is rare in layered vdW materials in general. The realization of a magnetic high-mobility vdW material would open the possibility for novel magnetic twistronic or spintronic devices. Here we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V-1 s-1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus, and is only surpassed by graphite. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers, and that the magnetic order and relatively high mobility is retained in approximately 20-nm-thin flakes.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, electrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
108 - M.T. Dau , C. Vergnaud , M. Gay 2019
The magnetic order associated with the degree of freedom of spin in two-dimensional (2D) materials is subjected to intense investigation because of its potential application in 2D spintronics and valley-related magnetic phenomena. We report here a bottom-up strategy using molecular beam epitaxy to grow and dope large-area (cm$^2$) few-layer MoSe$_2$ with Mn as a magnetic dopant. High-quality Mn-doped MoSe$_2$ layers are obtained for Mn content of less than 5 % (atomic). When increasing the Mn content above 5 % we observe a clear transition from layer-by-layer to cluster growth. Magnetic measurements involving a transfer process of the cm$^2$-large doped layers on 100-micron-thick silicon substrate, show plausible proof of high-temperature ferromagnetism of 1 % and 10 % Mn-doped MoSe$_2$. Although we could not point to a correlation between magnetic and electrical properties, we demonstrate that the transfer process described in this report permits to achieve conventional electrical and magnetic measurements on the doped layers transferred on any substrate. Therefore, this study provides a promising route to characterize stable ferromagnetic 2D layers, which is broadening the current start-of-the-art of 2D materials-based applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا