Do you want to publish a course? Click here

Microwave response in a topological superconducting quantum interference device

138   0   0.0 ( 0 )
 Added by Wei Pan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.



rate research

Read More

We have studied a Superconducting Quantum Interference SQUID device made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the Gas Immersion Laser Doping (GILD) technique. The SQUID device is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.
We successfully exploit the parabolic shape of the dc voltage output dip around B=0 of a Superconducting Quantum Interference Filter (SQIF) to mix weak external rf signals. The two tone response of weak time harmonic electromagnetic fields has been detected on the spectral voltage output of the SQIF at frequency f_0 = f_1 - f_2, for various frequencies f_1 and f_2 ranging from few MHz up to 20 GHz. The two tone response is a characteristic function of static magnetic field B and of bias current I_b, related to the second derivative of the dc voltage output.
We propose a transistor-like circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS)in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.
52 - Y.H. Yuan 2005
The discovery of magnetic monopoles would be of fundamental significance in the research of modern physics. In this paper, we present a short review of the history of magnetic monopole research. The theoretical work and experimental technique in the search for magnetic monopoles using SQUID (superconducting quantum interference device) are investigated. We also discuss the properties of magnetic monopole and propose a possible experimental test based upon the Faraday induction method.
We report on the fabrication and electrical transport properties of superconducting quantum interference devices (SQUIDs) made from a (Bi_{1-x}Sb_x)_2Se_3 topological insulator (TI) nanoribbon (NR) connected with Pb0.5In0.5 superconducting electrodes. Below the transition temperature of the superconducting Pb0.5In0.5 electrodes, periodic oscillations of the critical current are observed in the TI NR SQUID under a magnetic field applied perpendicular to the plane owing to flux quantization. Also the output voltage modulates as a function of the external magnetic field. Moreover, the SQUID the SQUID shows a voltage modulation envelope, which is considered to represent the Fraunhofer-like patterns of each single junction. These properties of the TI NR SQUID would provide a useful method to explore Majorana fermions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا