Do you want to publish a course? Click here

Glassy quantum nuclear pasta in neutron star crusts

77   0   0.0 ( 0 )
 Added by William Newton
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the nuclear pasta phases in neutron star crusts by conducting a large number of three-dimensional Hartree-Fock+BCS calculations at densities leading to the crust-core transition. We survey the shape parameter space of pasta at constant pressure. Spaghetti, waffles, lasagna, bi-continuous phases and cylindrical holes occupy local minima in the resulting Gibbs energy surfaces. The bi-continuous phase, in which both the neutron gas and nuclear matter extend continuously in all dimensions and therefore protons are delocalized, appears over a large range of depths. Our results support the idea that nuclear pasta is a glassy system. Multiple pasta configurations coexist in a given layer of the crust. At a characteristic temperature, of order $10^8$-$10^9$K, different phases become frozen into domains whose sizes we estimate to be 1-50 times the lattice spacing and over which the local density and electron fraction can vary. Above this temperature, there is very little long-range order and matter is an amorphous solid. Electron scattering off domain boundaries may contribute to the disorder resistivity of the pasta phases. Annealing of the domains may occur during cooling; repopulating of local minima during crustal heating might lead to temperature dependent transport properties in the deep layers of the crust. We identify 4 distinct regions: (1) nuclear pasta first appears as a local minima, but spherical nuclei are the ground state; (2) nuclear pasta become the absolute minimum, but spherical nuclei are still a local minimum (3) only nuclear pasta appears in local minima, and protons are still localized in at least one dimension (4) only pasta appears, and protons are delocalized. The whole pasta region can occupy up to 70% of the crust by mass and 40% by thickness, and the layer in which protons are delocalized could occupy 45% of the crust mass and 25% of its thickness.



rate research

Read More

In the framework of the relativistic mean field model with Thomas-Fermi approximation, we study the structures of low density nuclear matter in a three-dimensional geometry with reflection symmetry. The numerical accuracy and efficiency are improved by expanding the mean fields according to fast cosine transformation and considering only one octant of the unit cell. The effect of finite cell size is treated carefully by searching for the optimum cell size. Typical pasta structures (droplet, rod, slab, tube, and bubble) arranged in various crystalline configurations are obtained for both fixed proton fractions and $beta$-equilibration. It is found that the properties of droplets/bubbles are similar in body-centered cubic (BCC) and face-centered cubic (FCC) lattices, where the FCC lattice generally becomes more stable than BCC lattice as density increases. For the rod/tube phases, the honeycomb lattice is always more stable than the simple one. By introducing an $omega$-$rho$ cross coupling term, we further examine the pasta structures with a smaller slope of symmetry energy $L = 41.34$ MeV, which predicts larger onset densities for core-crust transition and non-spherical nuclei. Such a variation due to the reduction of $L$ is expected to have impacts on various properties in neutron stars, supernova dynamics, and binary neutron star mergers.
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6text{-}1.8M_{odot}$. This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a $1.4M_{odot}$ neutron star in the range $11.09text{-}12.86$ km.
112 - A. Estrade , M. Matos , H. Schatz 2011
The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Superconducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the scandium -- nickel range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of $^{61}${V}, $^{63}${Cr}, $^{66}${Mn}, and $^{74}${Ni} were measured for the first time with mass excesses of $-30.510(890)$ MeV, $-35.280(650)$ MeV, $-36.900(790)$ MeV, and $-49.210(990)$ MeV, respectively. With the measurement of the $^{66}$Mn mass, the locations of the two dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit superbursts are now experimentally constrained. We find that the location of the $^{66}$Fe$rightarrow^{66}$Mn electron capture transition occurs significantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV (2.6$sigma$) smaller than predicted by the FRDM mass model.
Neutron tunneling between neutron-rich nuclei in inhomogeneous dense matter encountered in neutron star crusts can release enormous energy on a short-timescale to power explosive phenomena in neutron stars. In this work we clarify aspects of this process that can occur in the outer regions of neutron stars when oscillations or cataclysmic events increase the ambient density. We use a time-dependent Hartree-Fock-Bogoliubov formalism to determine the rate of neutron diffusion and find that large amounts of energy can be released rapidly. The role of nuclear binding, the two-body interaction and pairing, on the neutron diffusion times is investigated. We consider a one-dimensional quantum diffusion model and extend our analysis to study the impact of diffusion in three-dimensions. We find that these novel neutron transfer reactions can generate energy at the amount of $simeq 10^{40}-10^{44}$ ergs under suitable conditions.
Nuclear matter under astrophysical conditions is explored with time-dependent and static Hartree-Fock calculations. The focus is in a regime of densities where matter segregates into liquid and gaseous phases unfolding a rich scenario of geometries, often called nuclear pasta shapes (e.g. spaghetti, lasagna). Particularly the appearance of the different phases depending on the proton fraction and the transition to uniform matter are investigated. In this context the neutron background density is of special interest, because it plays a crucial role for the type of pasta shape which is built. The study is performed in two dynamical ranges, one for hot matter and one at temperature zero to investigate the effect of cooling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا