Do you want to publish a course? Click here

Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation

357   0   0.0 ( 0 )
 Added by Naosad Alam
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6text{-}1.8M_{odot}$. This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a $1.4M_{odot}$ neutron star in the range $11.09text{-}12.86$ km.



rate research

Read More

The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied using six different families of relativistic mean-field (RMF) models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value ($T_csim$14-16 MeV). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near $T_c$, indicating that the warm equation of state of asymmetric nuclear matter at sub-saturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy $L$ of such models, and constraints extracted on $L$ from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust, (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer, (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden re-coupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning, (iv) The frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations, (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary, and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger.
349 - S. Huth , P. T. H. Pang , I. Tews 2021
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not only probed in astrophysical observations, but also in terrestrial heavy-ion collision experiments. In this work, we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars and from heavy-ion collisions of gold nuclei at relativistic energies with microscopic nuclear theory calculations to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent NICER observations. Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment, and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.
We present an inference of the nuclear symmetry energy magnitude $J$, the slope $L$ and the curvature $K_{rm sym}$ by combining neutron skin data on Ca, Pb and Sn isotopes and our best theoretical information about pure neutron matter (PNM). A Bayesian framework is used to consistently incorporate prior knowledge of the PNM equation of state from chiral effective field theory calculations. Neutron skins are modeled in a Hartree-Fock approach using an extended Skyrme energy-density functional which allows for independent variation of $J$, $L$ and $K_{rm sym}$ without affecting the symmetric nuclear matter equation of state. We discuss the choice of neutron skin data sets, and combining errors in quadrature we obtain 95% credible values of $J=31.3substack{+4.2 -5.9}$ MeV, $L=40substack{+34 -26}$ MeV and $K_{tau} = L - 6K_{rm sym}= -444substack{+100 -84}$ MeV using uninformative priors in $J$, $L$ and $K_{rm sym}$, and $J=31.9substack{+1.3 -1.3}$ MeV, $L=37substack{+9 -8}$ MeV and $K_{tau} = -480substack{+25 -26}$ MeV using PNM priors. The correlations between symmetry energy parameters induced by neutron skin data is discussed and compared with the droplet model. Neutron skin data alone is shown to place limits on the symmetry energy parameters as stringent as those obtained from chiral effective field theory alone, and when combined the 95% credible intervals are reduced by a factor of 4-5. Ahead of new measurements of lead and calcium neutron skins from parity-violating electron scattering experiments at Jefferson Lab and Mainz Superconducting Accelerator, we make predictions based on existing data on neutron skins of tin for the neutron skins of calcium and lead of 0.166$pm$0.008 fm and $0.169 pm 0.014$ fm respectively, using uninformative priors, and 0.167$pm$0.008 fm and $0.172 pm 0.015$ fm respectively, using PNM priors.
139 - Bao-An Li , Macon Magno 2020
Background: The nuclear symmetry energy $E_{sym}(rho)$ encodes information about the energy necessary to make nuclear systems more neutron-rich. While its slope parameter L at the saturation density $rho_0$ of nuclear matter has been relatively well constrained by recent astrophysical observations and terrestrial nuclear experiments, its curvature $K_{rm{sym}}$ characterizing the $E_{sym}(rho)$ around $2rho_0$ remains largely unconstrained. Over 520 calculations for $E_{sym}(rho)$ using various nuclear theories and interactions in the literature have predicted several significantly different $K_{rm{sym}}-L$ correlations. Purpose: If a unique $K_{rm{sym}}-L$ correlation of $E_{sym}(rho)$ can be firmly established, it will enable us to progressively better constrain the high-density behavior of $E_{sym}(rho)$ using the available constraints on its slope parameter L. We investigate if and by how much the different $K_{rm{sym}}-L$ correlations may affect neutron star observables. Method: A meta-model of nuclear Equation of States (EOSs) with three representative $K_{rm{sym}}-L$ correlation functions is used to generate multiple EOSs for neutron stars. We then examine effects of the $K_{rm{sym}}-L$ correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars. Results:The $K_{rm{sym}}-L$ correlation affects significantly both the crust-core transition density and pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars especially at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but can not distinguish the three representative $K_{rm{sym}}-L$ correlations considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا