Do you want to publish a course? Click here

Dissipative phase transition in systems with two-photon drive and nonlinear dissipation near the critical point

111   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study dissipative phase transition near the critical point for a system with two-photon driving and nonlinear dissipation. The proposed mean-field theory, which explicitly takes into account quantum fluctuations, allowed us to describe properly the evolution dynamics of the system and to demonstrate the new effects in the steady-state. We show that the presence of quantum fluctuations leads to a power-law dependence of the anomalous average at the phase transition point, with which the critical exponent is associated. Also, we investigate the effect of the quantum fluctuations on the critical point renormalization and demonstrate the existence of a two-photon pump threshold. It is noteworthy that the obtained results are in a good agreement with the numerical simulations.



rate research

Read More

The ground state of the photon-matter coupled system described by the Dicke model is found to be perfectly squeezed at the quantum critical point of the superradiant phase transition (SRPT). In the presence of the counter-rotating photon-atom coupling, the ground state is analytically expressed as a two-mode squeezed vacuum in the basis of photons and atomic collective excitations. The variance of a quantum fluctuation in the two-mode basis vanishes at the SRPT critical point, with its conjugate fluctuation diverging, ideally satisfying the Heisenberg uncertainty principle.
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.
84 - A. Vukics , A. Dombi , J. M. Fink 2018
We prove that the observable telegraph signal accompanying the bistability in the photon-blockade-breakdown regime of the driven and lossy Jaynes--Cummings model is the finite-size precursor of what in the thermodynamic limit is a genuine first-order phase transition. We construct a finite-size scaling of the system parameters to a well-defined thermodynamic limit, in which the system remains the same microscopic system, but the telegraph signal becomes macroscopic both in its timescale and intensity. The existence of such a finite-size scaling completes and justifies the classification of the photon-blockade-breakdown effect as a first-order dissipative quantum phase transition.
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, entanglement in the classical oscillator limit remains small. We derive the quantum phase transition with identical critical behavior in the two classical limits and explain the differences with respect to quantum fluctuations around the mean-field ground state through an effective model for the oscillator degrees of freedom. With numerical data for the full quantum model we study convergence to the classical limits. We contrast the classical oscillator limit with the dual limit of a high frequency oscillator, where the spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An alternative limit can be defined for the Rabi case of spin length one-half, in which spin frequency renormalization replaces the quantum phase transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا