No Arabic abstract
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, entanglement in the classical oscillator limit remains small. We derive the quantum phase transition with identical critical behavior in the two classical limits and explain the differences with respect to quantum fluctuations around the mean-field ground state through an effective model for the oscillator degrees of freedom. With numerical data for the full quantum model we study convergence to the classical limits. We contrast the classical oscillator limit with the dual limit of a high frequency oscillator, where the spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An alternative limit can be defined for the Rabi case of spin length one-half, in which spin frequency renormalization replaces the quantum phase transition.
The quantum phase transition of the Dicke-model has been observed recently in a system formed by motional excitations of a laser-driven Bose--Einstein condensate coupled to an optical cavity [1]. The cavity-based system is intrinsically open: photons can leak out of the cavity where they are detected. Even at zero temperature, the continuous weak measurement of the photon number leads to an irreversible dynamics towards a steady-state which exhibits a dynamical quantum phase transition. However, whereas the critical point and the mean field is only slightly modified with respect to the phase transition in the ground state, the entanglement and the critical exponents of the singular quantum correlations are significantly different in the two cases.
We calculate numerically the fidelity and its susceptibility for the ground state of the Dicke model. A minimum in the fidelity identifies the critical value of the interaction where a quantum phase crossover, the precursor of a phase transition for finite number of atoms N, takes place. The evolution of these observables is studied as a function of N, and their critical exponents evaluated. Using the critical exponents the universal curve for the specific susceptibility is recovered. An estimate to the precision to which the ground state wave function is numerically calculated is given, and found to have its lowest value, for a fixed truncation, in a vicinity of the critical coupling.
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily-high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that make use of the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical systems can lead to a quantum-enhanced time-scaling of the quantum Fisher information, and so of the measurement sensitivity.
We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms embedded in a non-linear optical medium, coupled to a single-mode quantized electromagnetic field. The optical medium is pumped externally through a classical electric field, so that there is a degenerate parametric amplification effect, which strongly modifies the field dynamics without affecting the atomic sector. Through a semiclassical description the different phases of this extended Dicke model are described. The quantum phase transition is characterized with the expectation values of some observables of the system as well as the Berry phase and its first derivative, where such quantities serve as order parameters. It is remarkable that the model allows the control of the quantum criticality through a suitable choice of the parameters of the non-linear optical medium, which could make possible the use of a low intensity laser to access the superradiant region experimentally.
The Dicke model famously exhibits a phase transition to a superradiant phase with a macroscopic population of photons and is realized in multiple settings in open quantum systems. In this work, we study a variant of the Dicke model where the cavity mode is lossy due to the coupling to a Markovian environment while the atomic mode is coupled to a colored bath. We analytically investigate this model by inspecting its low-frequency behavior via the Schwinger-Keldysh field theory and carefully examine the nature of the corresponding superradiant phase transition. Integrating out the fast modes, we can identify a simple effective theory allowing us to derive analytical expressions for various critical exponents, including those, such as the dynamical critical exponent, that have not been previously considered. We find excellent agreement with previous numerical results when the non-Markovian bath is at zero temperature; however, contrary to these studies, our low-frequency approach reveals that the same exponents govern the critical behavior when the colored bath is at finite temperature unless the chemical potential is zero. Furthermore, we show that the superradiant phase transition is classical in nature, while it is genuinely non-equilibrium. We derive a fractional Langevin equation and conjecture the associated fractional Fokker-Planck equation that capture the systems long-time memory as well as its non-equilibrium behavior. Finally, we consider finite-size effects at the phase transition and identify the finite-size scaling exponents, unlocking a rich behavior in both statics and dynamics of the photonic and atomic observables.