Do you want to publish a course? Click here

A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems

53   0   0.0 ( 0 )
 Added by Patrick Zschech
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Computer vision (CV) techniques try to mimic human capabilities of visual perception to support labor-intensive and time-consuming tasks like the recognition and localization of critical objects. Nowadays, CV increasingly relies on artificial intelligence (AI) to automatically extract useful information from images that can be utilized for decision support and business process automation. However, the focus of extant research is often exclusively on technical aspects when designing AI-based CV systems while neglecting socio-technical facets, such as trust, control, and autonomy. For this purpose, we consider the design of such systems from a hybrid intelligence (HI) perspective and aim to derive prescriptive design knowledge for CV-based HI systems. We apply a reflective, practice-inspired design science approach and accumulate design knowledge from six comprehensive CV projects. As a result, we identify four design-related mechanisms (i.e., automation, signaling, modification, and collaboration) that inform our derived meta-requirements and design principles. This can serve as a basis for further socio-technical research on CV-based HI systems.



rate research

Read More

Video-based person re-identification (Re-ID) aims to retrieve video sequences of the same person under non-overlapping cameras. Previous methods usually focus on limited views, such as spatial, temporal or spatial-temporal view, which lack of the observations in different feature domains. To capture richer perceptions and extract more comprehensive video representations, in this paper we propose a novel framework named Trigeminal Transformers (TMT) for video-based person Re-ID. More specifically, we design a trigeminal feature extractor to jointly transform raw video data into spatial, temporal and spatial-temporal domain. Besides, inspired by the great success of vision transformer, we introduce the transformer structure for video-based person Re-ID. In our work, three self-view transformers are proposed to exploit the relationships between local features for information enhancement in spatial, temporal and spatial-temporal domains. Moreover, a cross-view transformer is proposed to aggregate the multi-view features for comprehensive video representations. The experimental results indicate that our approach can achieve better performance than other state-of-the-art approaches on public Re-ID benchmarks. We will release the code for model reproduction.
Computer Vision, either alone or combined with other technologies such as radar or Lidar, is one of the key technologies used in Advanced Driver Assistance Systems (ADAS). Its role understanding and analysing the driving scene is of great importance as it can be noted by the number of ADAS applications that use this technology. However, porting a vision algorithm to an embedded automotive system is still very challenging, as there must be a trade-off between several design requisites. Furthermore, there is not a standard implementation platform, so different alternatives have been proposed by both the scientific community and the industry. This paper aims to review the requisites and the different embedded implementation platforms that can be used for Computer Vision-based ADAS, with a critical analysis and an outlook to future trends.
Automated driving is an active area of research in both industry and academia. Automated Parking, which is automated driving in a restricted scenario of parking with low speed manoeuvring, is a key enabling product for fully autonomous driving systems. It is also an important milestone from the perspective of a higher end system built from the previous generation driver assistance systems comprising of collision warning, pedestrian detection, etc. In this paper, we discuss the design and implementation of an automated parking system from the perspective of computer vision algorithms. Designing a low-cost system with functional safety is challenging and leads to a large gap between the prototype and the end product, in order to handle all the corner cases. We demonstrate how camera systems are crucial for addressing a range of automated parking use cases and also, to add robustness to systems based on active distance measuring sensors, such as ultrasonics and radar. The key vision modules which realize the parking use cases are 3D reconstruction, parking slot marking recognition, freespace and vehicle/pedestrian detection. We detail the important parking use cases and demonstrate how to combine the vision modules to form a robust parking system. To the best of the authors knowledge, this is the first detailed discussion of a systemic view of a commercial automated parking system.
How far can we go with textual representations for understanding pictures? In image understanding, it is essential to use concise but detailed image representations. Deep visual features extracted by vision models, such as Faster R-CNN, are prevailing used in multiple tasks, and especially in visual question answering (VQA). However, conventional deep visual features may struggle to convey all the details in an image as we humans do. Meanwhile, with recent language models progress, descriptive text may be an alternative to this problem. This paper delves into the effectiveness of textual representations for image understanding in the specific context of VQA. We propose to take description-question pairs as input, instead of deep visual features, and fed them into a language-only Transformer model, simplifying the process and the computational cost. We also experiment with data augmentation techniques to increase the diversity in the training set and avoid learning statistical bias. Extensive evaluations have shown that textual representations require only about a hundred words to compete with deep visual features on both VQA 2.0 and VQA-CP v2.
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a semantic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا