Do you want to publish a course? Click here

Autonomous Vehicles that Alert Humans to Take-Over Controls: Modeling with Real-World Data

70   0   0.0 ( 0 )
 Added by Akshay Rangesh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With increasing automation in passenger vehicles, the study of safe and smooth occupant-vehicle interaction and control transitions is key. In this study, we focus on the development of contextual, semantically meaningful representations of the driver state, which can then be used to determine the appropriate timing and conditions for transfer of control between driver and vehicle. To this end, we conduct a large-scale real-world controlled data study where participants are instructed to take-over control from an autonomous agent under different driving conditions while engaged in a variety of distracting activities. These take-over events are captured using multiple driver-facing cameras, which when labelled result in a dataset of control transitions and their corresponding take-over times (TOTs). We then develop and train TOT models that operate sequentially on mid to high-level features produced by computer vision algorithms operating on different driver-facing camera views. The proposed TOT model produces continuous predictions of take-over times without delay, and shows promising qualitative and quantitative results in complex real-world scenarios.



rate research

Read More

Understanding occupant-vehicle interactions by modeling control transitions is important to ensure safe approaches to passenger vehicle automation. Models which contain contextual, semantically meaningful representations of driver states can be used to determine the appropriate timing and conditions for transfer of control between driver and vehicle. However, such models rely on real-world control take-over data from drivers engaged in distracting activities, which is costly to collect. Here, we introduce a scheme for data augmentation for such a dataset. Using the augmented dataset, we develop and train take-over time (TOT) models that operate sequentially on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views, showing models trained on the augmented dataset to outperform the initial dataset. The demonstrated model features encode different aspects of the driver state, pertaining to the face, hands, foot and upper body of the driver. We perform ablative experiments on feature combinations as well as model architectures, showing that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay, suitable for complex real-world scenarios.
One of the major challenges that autonomous cars are facing today is driving in urban environments. To make it a reality, autonomous vehicles require the ability to communicate with other road users and understand their intentions. Such interactions are essential between the vehicles and pedestrians as the most vulnerable road users. Understanding pedestrian behavior, however, is not intuitive and depends on various factors such as demographics of the pedestrians, traffic dynamics, environmental conditions, etc. In this paper, we identify these factors by surveying pedestrian behavior studies, both the classical works on pedestrian-driver interaction and the modern ones that involve autonomous vehicles. To this end, we will discuss various methods of studying pedestrian behavior, and analyze how the factors identified in the literature are interrelated. We will also review the practical applications aimed at solving the interaction problem including design approaches for autonomous vehicles that communicate with pedestrians and visual perception and reasoning algorithms tailored to understanding pedestrian intention. Based on our findings, we will discuss the open problems and propose future research directions.
Widespread adoption of autonomous vehicles will not become a reality until solutions are developed that enable these intelligent agents to co-exist with humans. This includes safely and efficiently interacting with human-driven vehicles, especially in both conflictive and competitive scenarios. We build up on the prior work on socially-aware navigation and borrow the concept of social value orientation from psychology -- that formalizes how much importance a person allocates to the welfare of others -- in order to induce altruistic behavior in autonomous driving. In contrast with existing works that explicitly model the behavior of human drivers and rely on their expected response to create opportunities for cooperation, our Sympathetic Cooperative Driving (SymCoDrive) paradigm trains altruistic agents that realize safe and smooth traffic flow in competitive driving scenarios only from experiential learning and without any explicit coordination. We demonstrate a significant improvement in both safety and traffic-level metrics as a result of this altruistic behavior and importantly conclude that the level of altruism in agents requires proper tuning as agents that are too altruistic also lead to sub-optimal traffic flow. The code and supplementary material are available at: https://symcodrive.toghi.net/
Continuous estimation the drivers take-over readiness is critical for safe and timely transfer of control during the failure modes of autonomous vehicles. In this paper, we propose a data-driven approach for estimating the drivers take-over readiness based purely on observable cues from in-vehicle vision sensors. We present an extensive naturalistic drive dataset of drivers in a conditionally autonomous vehicle running on Californian freeways. We collect subjective ratings for the drivers take-over readiness from multiple human observers viewing the sensor feed. Analysis of the ratings in terms of intra-class correlation coefficients (ICCs) shows a high degree of consistency in the ratings across raters. We define a metric for the drivers take-over readiness termed the Observable Readiness Index (ORI) based on the ratings. Finally, we propose an LSTM model for continuous estimation of the drivers ORI based on a holistic representation of the drivers state, capturing gaze, hand, pose and foot activity. Our model estimates the ORI with a mean absolute error of 0.449 on a 5 point scale.
Simulating realistic radar data has the potential to significantly accelerate the development of data-driven approaches to radar processing. However, it is fraught with difficulty due to the notoriously complex image formation process. Here we propose to learn a radar sensor model capable of synthesising faithful radar observations based on simulated elevation maps. In particular, we adopt an adversarial approach to learning a forward sensor model from unaligned radar examples. In addition, modelling the backward model encourages the output to remain aligned to the world state through a cyclical consistency criterion. The backward model is further constrained to predict elevation maps from real radar data that are grounded by partial measurements obtained from corresponding lidar scans. Both models are trained in a joint optimisation. We demonstrate the efficacy of our approach by evaluating a down-stream segmentation model trained purely on simulated data in a real-world deployment. This achieves performance within four percentage points of the same model trained entirely on real data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا