No Arabic abstract
The model-based investing using financial factors is evolving as a principal method for quantitative investment. The main challenge lies in the selection of effective factors towards excess market returns. Existing approaches, either hand-picking factors or applying feature selection algorithms, do not orchestrate both human knowledge and computational power. This paper presents iQUANT, an interactive quantitative investment system that assists equity traders to quickly spot promising financial factors from initial recommendations suggested by algorithmic models, and conduct a joint refinement of factors and stocks for investment portfolio composition. We work closely with professional traders to assemble empirical characteristics of good factors and propose effective visualization designs to illustrate the collective performance of financial factors, stock portfolios, and their interactions. We evaluate iQUANT through a formal user study, two case studies, and expert interviews, using a real stock market dataset consisting of 3000 stocks times 6000 days times 56 factors.
Media is evolving from traditional linear narratives to personalised experiences, where control over information (or how it is presented) is given to individual audience members. Measuring and understanding audience engagement with this media is important in at least two ways: (1) a post-hoc understanding of how engaged audiences are with the content will help production teams learn from experience and improve future productions; (2), this type of media has potential for real-time measures of engagement to be used to enhance the user experience by adapting content on-the-fly. Engagement is typically measured by asking samples of users to self-report, which is time consuming and expensive. In some domains, however, interaction data have been used to infer engagement. Fortuitously, the nature of interactive media facilitates a much richer set of interaction data than traditional media; our research aims to understand if these data can be used to infer audience engagement. In this paper, we report a study using data captured from audience interactions with an interactive TV show to model and predict engagement. We find that temporal metrics, including overall time spent on the experience and the interval between events, are predictive of engagement. The results demonstrate that interaction data can be used to infer users engagement during and after an experience, and the proposed techniques are relevant to better understand audience preference and responses.
Quantitative investment aims to maximize the return and minimize the risk in a sequential trading period over a set of financial instruments. Recently, inspired by rapid development and great potential of AI technologies in generating remarkable innovation in quantitative investment, there has been increasing adoption of AI-driven workflow for quantitative research and practical investment. In the meantime of enriching the quantitative investment methodology, AI technologies have raised new challenges to the quantitative investment system. Particularly, the new learning paradigms for quantitative investment call for an infrastructure upgrade to accommodate the renovated workflow; moreover, the data-driven nature of AI technologies indeed indicates a requirement of the infrastructure with more powerful performance; additionally, there exist some unique challenges for applying AI technologies to solve different tasks in the financial scenarios. To address these challenges and bridge the gap between AI technologies and quantitative investment, we design and develop Qlib that aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.
The problem of portfolio allocation in the context of stocks evolving in random environments, that is with volatility and returns depending on random factors, has attracted a lot of attention. The problem of maximizing a power utility at a terminal time with only one random factor can be linearized thanks to a classical distortion transformation. In the present paper, we address the problem with several factors using a perturbation technique around the case where these factors are perfectly correlated reducing the problem to the case with a single factor. We illustrate our result with a particular model for which we have explicit formulas. A rigorous accuracy result is also derived using a verification result for the HJB equation involved. In order to keep the notations as explicit as possible, we treat the case with one stock and two factors and we describe an extension to the case with two stocks and two factors.
Machine learning and many of its applications are considered hard to approach due to their complexity and lack of transparency. One mission of human-centric machine learning is to improve algorithm transparency and user satisfaction while ensuring an acceptable task accuracy. In this work, we present an interactive image restoration framework, which exploits both image prior and human painting knowledge in an iterative manner such that they can boost on each other. Additionally, in this system users can repeatedly get feedback of their interactions from the restoration progress. This informs the users about their impact on the restoration results, which leads to better sense of control, which can lead to greater trust and approachability. The positive results of both objective and subjective evaluation indicate that, our interactive approach positively contributes to the approachability of restoration algorithms in terms of algorithm performance and user experience.
This paper was removed due to an error in the proof (Claim 4.12 as stated is not true). The authors would like to thank Ilya Volkovich for pointing out a counterexample to this papers main result in positive characteristic: If $F$ is a field with prime characteristic $p$, then the polynomial $x_1^p + x_2^p + ldots + x^n^p$ has the following factor: $(x_1+x_2+ ldots + x_n)^{p-1}$, which has sparsity $n^p$.