Do you want to publish a course? Click here

Integrating Sensing and Communications for Ubiquitous IoT: Applications, Trends and Challenges

87   0   0.0 ( 0 )
 Added by Fan Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent advances in wireless communication and solid-state circuits together with the enormous demands of sensing ability have given rise to a new enabling technology, integrated sensing and communications (ISAC). The ISAC captures two main advantages over dedicated sensing and communication functionalities: 1) Integration gain to efficiently utilize congested resources, and even, 2) Coordination gain to balance dual-functional performance or/and perform mutual assistance. Meanwhile, triggered by ISAC, we are also witnessing a paradigm shift in the ubiquitous IoT architecture, in which the sensing and communication layers are tending to converge into a new layer, namely, the signaling layer. In this paper, we first attempt to introduce a definition of ISAC, analyze the various influencing forces, and present several novel use cases. Then, we complement the understanding of the signaling layer by presenting several key benefits in the IoT era. We classify existing dominant ISAC solutions based on the layers in which integration is applied. Finally, several challenges and opportunities are discussed. We hope that this overview article will serve as a primary starting point for new researchers and offer a birds-eye view of the existing ISAC-related advances from academia and industry, ranging from solid-state circuitry, signal processing, and wireless communication to mobile computing.

rate research

Read More

Driven by the vision of intelligent connection of everything and digital twin towards 6G, a myriad of new applications, such as immersive extended reality, autonomous driving, holographic communications, intelligent industrial internet, will emerge in the near future, holding the promise to revolutionize the way we live and work. These trends inspire a novel technical design principle that seamlessly integrates two originally decoupled functionalities, i.e., wireless communication and sensing, into one system in a symbiotic way, which is dubbed symbiotic sensing and communications (SSaC), to endow the wireless network with the capability to see and talk to the physical world simultaneously. Noting that the term SSaC is used instead of ISAC (integrated sensing and communications) because the word ``symbiotic/symbiosis is more inclusive and can better accommodate different integration levels and evolution stages of sensing and communications. Aligned with this understanding, this article makes the first attempts to clarify the concept of SSaC, illustrate its vision, envision the three-stage evolution roadmap, namely neutralism, commensalism, and mutualism of SaC. Then, three categories of applications of SSaC are introduced, followed by detailed description of typical use cases in each category. Finally, we summarize the major performance metrics and key enabling technologies for SSaC.
104 - C.-X. Wang , J. Huang , H. Wang 2020
In this article, we first present our vision on the application scenarios, performance metrics, and potential key technologies of the sixth generation (6G) wireless communication networks. Then, 6G wireless channel measurements, characteristics, and models are comprehensively surveyed for all frequency bands and all scenarios, focusing on millimeter wave (mmWave), terahertz (THz), and optical wireless communication channels under all spectrums, satellite, unmanned aerial vehicle (UAV), maritime, and underwater acoustic communication channels under global coverage scenarios, and high-speed train (HST), vehicle-to-vehicle (V2V), ultra-massive multiple-input multiple-output (MIMO), orbital angular momentum (OAM), and industry Internet of things (IoT) communication channels under full application scenarios. Future research challenges on 6G channel measurements, a general standard 6G channel model framework, channel measurements and models for intelligent reflection surface (IRS) based 6G technologies, and artificial intelligence (AI) enabled channel measurements and models are also given.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability, resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population density and economics. This article examines the motivations and challenges of providing broadband access over vast rural regions, with an emphasis on the wireless aspect in view of its irreplaceable role in closing the digital gap. Applications and opportunities for future rural wireless communications are discussed for a variety of areas, including residential welfare, digital agriculture, and transportation. This article also comprehensively investigates current and emerging wireless technologies that could facilitate rural deployment. Although there is no simple solution, there is an urgent need for researchers to work on coverage, cost, and reliability of rural wireless access.
Integrating sensing into standardized communication systems can potentially benefit many consumer applications that require both radio frequency functions. However, without an effective sensing method, such integration may not achieve the expected gains of cost and energy efficiency. Existing sensing methods, which use communication payload signals, either have limited sensing performance or suffer from high complexity. In this paper, we develop a novel and flexible sensing framework which has a complexity only dominated by a Fourier transform and also provides the flexibility in adapting for different sensing needs. We propose to segment a whole block of echo signal evenly into sub-blocks; adjacent ones are allowed to overlap. We design a virtual cyclic prefix (VCP) for each sub-block that allows us to employ two common ways of removing communication data symbols and generate two types of range-Doppler maps (RDMs) for sensing. We perform a comprehensive analysis of the signal components in the RDMs, proving that their interference-plus-noise (IN) terms are approximately Gaussian distributed. The statistical properties of the distributions are derived, which leads to the analytical comparisons between the two RDMs as well as between the prior and our sensing methods. Moreover, the impact of the lengths of sub-block, VCP and overlapping signal on sensing performance is analyzed. Criteria for designing these lengths for better sensing performance are also provided. Extensive simulations validate the superiority of the proposed sensing framework over prior methods in terms of signal-to-IN ratios in RDMs, detecting performance and flexibility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا