Do you want to publish a course? Click here

Challenges and Opportunities of Future Rural Wireless Communications

90   0   0.0 ( 0 )
 Added by Yaguang Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population density and economics. This article examines the motivations and challenges of providing broadband access over vast rural regions, with an emphasis on the wireless aspect in view of its irreplaceable role in closing the digital gap. Applications and opportunities for future rural wireless communications are discussed for a variety of areas, including residential welfare, digital agriculture, and transportation. This article also comprehensively investigates current and emerging wireless technologies that could facilitate rural deployment. Although there is no simple solution, there is an urgent need for researchers to work on coverage, cost, and reliability of rural wireless access.



rate research

Read More

5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability, resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
Reconfigurable intelligent surfaces (RISs) have emerged as a cost- and energy-efficient technology that can customize and program the physical propagation environment by reflecting radio waves in preferred directions. However, the purely passive reflection of RISs not only limits the end-to-end channel beamforming gains, but also hinders the acquisition of accurate channel state information for the phase control at RISs. In this paper, we provide an overview of a hybrid relay-reflecting intelligent surface (HR-RIS) architecture, in which only a few elements are active and connected to power amplifiers and radio frequency chains. The introduction of a small number of active elements enables a remarkable system performance improvement which can also compensate for losses due to hardware impairments such as the deployment of limited-resolution phase shifters. Particularly, the active processing facilitates efficient channel estimation and localization at HR-RISs. We present two practical architectures for HR-RISs, namely, fixed and dynamic HR-RISs, and discuss their applications to beamforming, channel estimation, and localization. The benefits, key challenges, and future research directions for HR-RIS-aided communications are also highlighted. Numerical results for an exemplary deployment scenario show that HR-RISs with only four active elements can attain up to 42.8 percent and 41.8 percent improvement in spectral efficiency and energy efficiency, respectively, compared with conventional RISs.
Many emerging technologies, such as ultra-massive multiple-input multiple-output (UM-MIMO), terahertz (THz) communications are under active discussion as promising technologies to support the extremely high access rate and superior network capacity in the future sixth-generation (6G) mobile communication systems. However, such technologies are still facing many challenges for practical implementation. In particular, UM-MIMO and THz communication require extremely large number of radio frequency (RF) chains, and hence suffering from prohibitive hardware cost and complexity. In this article, we introduce a new paradigm to address the above issues, namely wireless communication enabled by programmable metasurfaces, by exploiting the powerful capability of metasurfaces in manipulating electromagnetic waves. We will first introduce the basic concept of programmable metasurfaces, followed by the promising paradigm shift in future wireless communication systems enabled by programmable metasurfaces. In particular, we propose two prospective paradigms of applying programmable metasurfaces in wireless transceivers: namely RF chain-free transmitter and space-down-conversion receiver, which both have great potential to simplify the architecture and reduce the hardware cost of future wireless transceivers. Furthermore, we present the design architectures, preliminary experimental results and main advantages of these new paradigms and discuss their potential opportunities and challenges toward ultra-massive 6G communications with low hardware complexity, low cost, and high energy efficiency.
A plethora of demanding services and use cases mandate a revolutionary shift in the management of future wireless network resources. Indeed, when tight quality of service demands of applications are combined with increased complexity of the network, legacy network management routines will become unfeasible in 6G. Artificial Intelligence (AI) is emerging as a fundamental enabler to orchestrate the network resources from bottom to top. AI-enabled radio access and AI-enabled core will open up new opportunities for automated configuration of 6G. On the other hand, there are many challenges in AI-enabled networks that need to be addressed. Long convergence time, memory complexity, and complex behaviour of machine learning algorithms under uncertainty as well as highly dynamic channel, traffic and mobility conditions of the network contribute to the challenges. In this paper, we survey the state-of-art research in utilizing machine learning techniques in improving the performance of wireless networks. In addition, we identify challenges and open issues to provide a roadmap for the researchers.
Recent advances in the fabrication and experimentation of Reconfigurable Intelligent Surfaces (RISs) have motivated the concept of the smart radio environment, according to which the propagation of information-bearing waveforms in the wireless medium is amenable to programmability. Although the vast majority of recent experimental research on RIS-empowered wireless communications gravitates around narrowband beamforming in quasi-free space, RISs are foreseen to revolutionize wideband wireless connectivity in dense urban as well as indoor scenarios, which are usually characterized as strongly reverberant environments exhibiting severe multipath conditions. In this article, capitalizing on recent physics-driven experimental explorations of RIS-empowered wave propagation control in complex scattering cavities, we identify the potential of the spatiotemporal control offered by RISs to boost wireless communications in rich scattering channels via two case studies. First, an RIS is deployed to shape the multipath channel impulse response, which is shown to enable higher achievable communication rates. Second, the RIS-tunable propagation environment is leveraged as an analog multiplexer to localize non-cooperative objects using wave fingerprints, even when they are outside the line of sight. Future research challenges and opportunities in the algorithmic design and experimentation of smart rich scattering wireless environments enabled by RISs for sixth Generation (6G) wireless communications are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا