Do you want to publish a course? Click here

H-Net: Unsupervised Attention-based Stereo Depth Estimation Leveraging Epipolar Geometry

86   0   0.0 ( 0 )
 Added by Baoru Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Depth estimation from a stereo image pair has become one of the most explored applications in computer vision, with most of the previous methods relying on fully supervised learning settings. However, due to the difficulty in acquiring accurate and scalable ground truth data, the training of fully supervised methods is challenging. As an alternative, self-supervised methods are becoming more popular to mitigate this challenge. In this paper, we introduce the H-Net, a deep-learning framework for unsupervised stereo depth estimation that leverages epipolar geometry to refine stereo matching. For the first time, a Siamese autoencoder architecture is used for depth estimation which allows mutual information between the rectified stereo images to be extracted. To enforce the epipolar constraint, the mutual epipolar attention mechanism has been designed which gives more emphasis to correspondences of features which lie on the same epipolar line while learning mutual information between the input stereo pair. Stereo correspondences are further enhanced by incorporating semantic information to the proposed attention mechanism. More specifically, the optimal transport algorithm is used to suppress attention and eliminate outliers in areas not visible in both cameras. Extensive experiments on KITTI2015 and Cityscapes show that our method outperforms the state-ofthe-art unsupervised stereo depth estimation methods while closing the gap with the fully supervised approaches.



rate research

Read More

Recently, end-to-end trainable deep neural networks have significantly improved stereo depth estimation for perspective images. However, 360{deg} images captured under equirectangular projection cannot benefit from directly adopting existing methods due to distortion introduced (i.e., lines in 3D are not projected onto lines in 2D). To tackle this issue, we present a novel architecture specifically designed for spherical disparity using the setting of top-bottom 360{deg} camera pairs. Moreover, we propose to mitigate the distortion issue by (1) an additional input branch capturing the position and relation of each pixel in the spherical coordinate, and (2) a cost volume built upon a learnable shifting filter. Due to the lack of 360{deg} stereo data, we collect two 360{deg} stereo datasets from Matterport3D and Stanford3D for training and evaluation. Extensive experiments and ablation study are provided to validate our method against existing algorithms. Finally, we show promising results on real-world environments capturing images with two consumer-level cameras.
Stereo image pairs encode 3D scene cues into stereo correspondences between the left and right images. To exploit 3D cues within stereo images, recent CNN based methods commonly use cost volume techniques to capture stereo correspondence over large disparities. However, since disparities can vary significantly for stereo cameras with different baselines, focal lengths and resolutions, the fixed maximum disparity used in cost volume techniques hinders them to handle different stereo image pairs with large disparity variations. In this paper, we propose a generic parallax-attention mechanism (PAM) to capture stereo correspondence regardless of disparity variations. Our PAM integrates epipolar constraints with attention mechanism to calculate feature similarities along the epipolar line to capture stereo correspondence. Based on our PAM, we propose a parallax-attention stereo matching network (PASMnet) and a parallax-attention stereo image super-resolution network (PASSRnet) for stereo matching and stereo image super-resolution tasks. Moreover, we introduce a new and large-scale dataset named Flickr1024 for stereo image super-resolution. Experimental results show that our PAM is generic and can effectively learn stereo correspondence under large disparity variations in an unsupervised manner. Comparative results show that our PASMnet and PASSRnet achieve the state-of-the-art performance.
Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this article, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research.
94 - Zehao Yu , Lei Jin , 2020
This paper tackles the unsupervised depth estimation task in indoor environments. The task is extremely challenging because of the vast areas of non-texture regions in these scenes. These areas could overwhelm the optimization process in the commonly used unsupervised depth estimation framework proposed for outdoor environments. However, even when those regions are masked out, the performance is still unsatisfactory. In this paper, we argue that the poor performance suffers from the non-discriminative point-based matching. To this end, we propose P$^2$Net. We first extract points with large local gradients and adopt patches centered at each point as its representation. Multiview consistency loss is then defined over patches. This operation significantly improves the robustness of the network training. Furthermore, because those textureless regions in indoor scenes (e.g., wall, floor, roof, etc) usually correspond to planar regions, we propose to leverage superpixels as a plane prior. We enforce the predicted depth to be well fitted by a plane within each superpixel. Extensive experiments on NYUv2 and ScanNet show that our P$^2$Net outperforms existing approaches by a large margin. Code is available at url{https://github.com/svip-lab/Indoor-SfMLearner}.
Stereo-based depth estimation is a cornerstone of computer vision, with state-of-the-art methods delivering accurate results in real time. For several applications such as autonomous navigation, however, it may be useful to trade accuracy for lower latency. We present Bi3D, a method that estimates depth via a series of binary classifications. Rather than testing if objects are at a particular depth $D$, as existing stereo methods do, it classifies them as being closer or farther than $D$. This property offers a powerful mechanism to balance accuracy and latency. Given a strict time budget, Bi3D can detect objects closer than a given distance in as little as a few milliseconds, or estimate depth with arbitrarily coarse quantization, with complexity linear with the number of quantization levels. Bi3D can also use the allotted quantization levels to get continuous depth, but in a specific depth range. For standard stereo (i.e., continuous depth on the whole range), our method is close to or on par with state-of-the-art, finely tuned stereo methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا