Do you want to publish a course? Click here

Opening up Open-World Tracking

62   0   0.0 ( 0 )
 Added by Jonathon Luiten
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose and study Open-World Tracking (OWT). Open-world tracking goes beyond current multi-object tracking benchmarks and methods which focus on tracking object classes that belong to a predefined closed-set of frequently observed object classes. In OWT, we relax this assumption: we may encounter objects at inference time that were not labeled for training. The main contribution of this paper is the formalization of the OWT task, along with an evaluation protocol and metric (Open-World Tracking Accuracy, OWTA), which decomposes into two intuitive terms, one for measuring recall, and another for measuring track association accuracy. This allows us to perform a rigorous evaluation of several different baselines that follow design patterns proposed in the multi-object tracking community. Further we show that our Open-World Tracking Baseline, while performing well in the OWT setting, also achieves near state-of-the-art results on traditional closed-world benchmarks, without any adjustments or tuning. We believe that this paper is an initial step towards studying multi-object tracking in the open world, a task of crucial importance for future intelligent agents that will need to understand, react to, and learn from, an infinite variety of objects that can appear in an open world.



rate research

Read More

114 - Lu Qi , Jason Kuen , Yi Wang 2021
We introduce a new image segmentation task, termed Entity Segmentation (ES) with the aim to segment all visual entities in an image without considering semantic category labels. It has many practical applications in image manipulation/editing where the segmentation mask quality is typically crucial but category labels are less important. In this setting, all semantically-meaningful segments are equally treated as categoryless entities and there is no thing-stuff distinction. Based on our unified entity representation, we propose a center-based entity segmentation framework with two novel modules to improve mask quality. Experimentally, both our new task and framework demonstrate superior advantages as against existing work. In particular, ES enables the following: (1) merging multiple datasets to form a large training set without the need to resolve label conflicts; (2) any model trained on one dataset can generalize exceptionally well to other datasets with unseen domains. Our code is made publicly available at https://github.com/dvlab-research/Entity.
66 - Yu Shu , Yemin Shi , Yaowei Wang 2019
In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the textit{closed-set} assumption that all action categories are known beforehand while deep networks can be well trained for these categories. However, action recognition in the real world is essentially an textit{open-set} problem, namely, it is impossible to know all action categories beforehand and consequently infeasible to prepare sufficient training samples for those emerging categories. In this case, applying closed-set recognition methods will definitely lead to unseen-category errors. To address this challenge, we propose the Open Deep Network (ODN) for the open-set action recognition task. Technologically, ODN detects new categories by applying a multi-class triplet thresholding method, and then dynamically reconstructs the classification layer and opens the deep network by adding predictors for new categories continually. In order to transfer the learned knowledge to the new category, two novel methods, Emphasis Initialization and Allometry Training, are adopted to initialize and incrementally train the new predictor so that only few samples are needed to fine-tune the model. Extensive experiments show that ODN can effectively detect and recognize new categories with little human intervention, thus applicable to the open-set action recognition tasks in the real world. Moreover, ODN can even achieve comparable performance to some closed-set methods.
As autonomous decision-making agents move from narrow operating environments to unstructured worlds, learning systems must move from a closed-world formulation to an open-world and few-shot setting in which agents continuously learn new classes from small amounts of information. This stands in stark contrast to modern machine learning systems that are typically designed with a known set of classes and a large number of examples for each class. In this work we extend embedding-based few-shot learning algorithms to the open-world recognition setting. We combine Bayesian non-parametric class priors with an embedding-based pre-training scheme to yield a highly flexible framework which we refer to as few-shot learning for open world recognition (FLOWR). We benchmark our framework on open-world extensions of the common MiniImageNet and TieredImageNet few-shot learning datasets. Our results show, compared to prior methods, strong classification accuracy performance and up to a 12% improvement in H-measure (a measure of novel class detection) from our non-parametric open-world few-shot learning scheme.
We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as $f_a simeq 10^{17},rm{GeV}$ viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.
Recent years have witnessed the fast evolution and promising performance of the convolutional neural network (CNN)-based trackers, which aim at imitating biological visual systems. However, current CNN-based trackers can hardly generalize well to low-light scenes that are commonly lacked in the existing training set. In indistinguishable night scenarios frequently encountered in unmanned aerial vehicle (UAV) tracking-based applications, the robustness of the state-of-the-art (SOTA) trackers drops significantly. To facilitate aerial tracking in the dark through a general fashion, this work proposes a low-light image enhancer namely DarkLighter, which dedicates to alleviate the impact of poor illumination and noise iteratively. A lightweight map estimation network, i.e., ME-Net, is trained to efficiently estimate illumination maps and noise maps jointly. Experiments are conducted with several SOTA trackers on numerous UAV dark tracking scenes. Exhaustive evaluations demonstrate the reliability and universality of DarkLighter, with high efficiency. Moreover, DarkLighter has further been implemented on a typical UAV system. Real-world tests at night scenes have verified its practicability and dependability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا