No Arabic abstract
Neural Language Models (NLM), when trained and evaluated with context spanning multiple utterances, have been shown to consistently outperform both conventional n-gram language models and NLMs that use limited context. In this paper, we investigate various techniques to incorporate turn based context history into both recurrent (LSTM) and Transformer-XL based NLMs. For recurrent based NLMs, we explore context carry over mechanism and feature based augmentation, where we incorporate other forms of contextual information such as bot response and system dialogue acts as classified by a Natural Language Understanding (NLU) model. To mitigate the sharp nearby, fuzzy far away problem with contextual NLM, we propose the use of attention layer over lexical metadata to improve feature based augmentation. Additionally, we adapt our contextual NLM towards user provided on-the-fly speech patterns by leveraging encodings from a large pre-trained masked language model and performing fusion with a Transformer-XL based NLM. We test our proposed models using N-best rescoring of ASR hypotheses of task-oriented dialogues and also evaluate on downstream NLU tasks such as intent classification and slot labeling. The best performing model shows a relative WER between 1.6% and 9.1% and a slot labeling F1 score improvement of 4% over non-contextual baselines.
We have recently seen the emergence of several publicly available Natural Language Understanding (NLU) toolkits, which map user utterances to structured, but more abstract, Dialogue Act (DA) or Intent specifications, while making this process accessible to the lay developer. In this paper, we present the first wide coverage evaluation and comparison of some of the most popular NLU services, on a large, multi-domain (21 domains) dataset of 25K user utterances that we have collected and annotated with Intent and Entity Type specifications and which will be released as part of this submission. The results show that on Intent classification Watson significantly outperforms the other platforms, namely, Dialogflow, LUIS and Rasa; though these also perform well. Interestingly, on Entity Type recognition, Watson performs significantly worse due to its low Precision. Again, Dialogflow, LUIS and Rasa perform well on this task.
Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a single-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC). We show that this joint training method directly optimizes performance for the downstream ASR task using unsupervised data while achieving similar word error rates to wav2vec~2.0 on the Librispeech 100-hour dataset. Finally, we postulate that solving the contrastive task is a regularization for the supervised CTC loss.
Videos uploaded on social media are often accompanied with textual descriptions. In building automatic speech recognition (ASR) systems for videos, we can exploit the contextual information provided by such video metadata. In this paper, we explore ASR lattice rescoring by selectively attending to the video descriptions. We first use an attention based method to extract contextual vector representations of video metadata, and use these representations as part of the inputs to a neural language model during lattice rescoring. Secondly, we propose a hybrid pointer network approach to explicitly interpolate the word probabilities of the word occurrences in metadata. We perform experimental evaluations on both language modeling and ASR tasks, and demonstrate that both proposed methods provide performance improvements by selectively leveraging the video metadata.
Conversational context information, higher-level knowledge that spans across sentences, can help to recognize a long conversation. However, existing speech recognition models are typically built at a sentence level, and thus it may not capture important conversational context information. The recent progress in end-to-end speech recognition enables integrating context with other available information (e.g., acoustic, linguistic resources) and directly recognizing words from speech. In this work, we present a direct acoustic-to-word, end-to-end speech recognition model capable of utilizing the conversational context to better process long conversations. We evaluate our proposed approach on the Switchboard conversational speech corpus and show that our system outperforms a standard end-to-end speech recognition system.
Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented conversational agents where its natural to partition the data by the requested application and for (2) Non-goal oriented conversational agents where the data can be partitioned using topic labels that come from predictions of a topic classifier. We obtain a relative WER improvement of 3% with a 1-pass decoding strategy and 6% in a 2-pass decoding framework, over an unadapted model. We also show up to a 15% relative improvement in recognizing named entities which is of significant value for conversational ASR systems.