Do you want to publish a course? Click here

Joint Masked CPC and CTC Training for ASR

109   0   0.0 ( 0 )
 Added by Chaitanya Talnikar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a single-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC). We show that this joint training method directly optimizes performance for the downstream ASR task using unsupervised data while achieving similar word error rates to wav2vec~2.0 on the Librispeech 100-hour dataset. Finally, we postulate that solving the contrastive task is a regularization for the supervised CTC loss.



rate research

Read More

The quality of automatic speech recognition (ASR) is critical to Dialogue Systems as ASR errors propagate to and directly impact downstream tasks such as language understanding (LU). In this paper, we propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with LU to improve the performance of both tasks simultaneously. To measure the effectiveness of this approach we used a public benchmark, the 2nd Dialogue State Tracking (DSTC2) corpus. As a baseline approach, we trained task-specific Statistical Language Models (SLM) and fine-tuned state-of-the-art Generalized Pre-training (GPT) Language Model to re-rank the n-best ASR hypotheses, followed by a model to identify the dialog act and slots. i) We further trained ranker models using GPT and Hierarchical CNN-RNN models with discriminatory losses to detect the best output given n-best hypotheses. We extended these ranker models to first select the best ASR output and then identify the dialogue act and slots in an end to end fashion. ii) We also proposed a novel joint ASR error correction and LU model, a word confusion pointer network (WCN-Ptr) with multi-head self-attention on top, which consumes the word confusions populated from the n-best. We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
242 - Kaitao Song , Xu Tan , Tao Qin 2020
BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting. The code and the pre-trained models are available at: https://github.com/microsoft/MPNet.
Automatic speech recognition (ASR) systems have dramatically improved over the last few years. ASR systems are most often trained from typical speech, which means that underrepresented groups dont experience the same level of improvement. In this paper, we present and evaluate finetuning techniques to improve ASR for users with non-standard speech. We focus on two types of non-standard speech: speech from people with amyotrophic lateral sclerosis (ALS) and accented speech. We train personalized models that achieve 62% and 35% relative WER improvement on these two groups, bringing the absolute WER for ALS speakers, on a test set of message bank phrases, down to 10% for mild dysarthria and 20% for more serious dysarthria. We show that 71% of the improvement comes from only 5 minutes of training data. Finetuning a particular subset of layers (with many fewer parameters) often gives better results than finetuning the entire model. This is the first step towards building state of the art ASR models for dysarthric speech.
Hybrid automatic speech recognition (ASR) models are typically sequentially trained with CTC or LF-MMI criteria. However, they have vastly different legacies and are usually implemented in different frameworks. In this paper, by decoupling the concepts of modeling units and label topologies and building proper numerator/denominator graphs accordingly, we establish a generalized framework for hybrid acoustic modeling (AM). In this framework, we show that LF-MMI is a powerful training criterion applicable to both limited-context and full-context models, for wordpiece/mono-char/bi-char/chenone units, with both HMM/CTC topologies. From this framework, we propose three novel training schemes: chenone(ch)/wordpiece(wp)-CTC-bMMI, and wordpiece(wp)-HMM-bMMI with different advantages in training performance, decoding efficiency and decoding time-stamp accuracy. The advantages of different training schemes are evaluated comprehensively on Librispeech, and wp-CTC-bMMI and ch-CTC-bMMI are evaluated on two real world ASR tasks to show their effectiveness. Besides, we also show bi-char(bc) HMM-MMI models can serve as better alignment models than traditional non-neural GMM-HMMs.
Neural Language Models (NLM), when trained and evaluated with context spanning multiple utterances, have been shown to consistently outperform both conventional n-gram language models and NLMs that use limited context. In this paper, we investigate various techniques to incorporate turn based context history into both recurrent (LSTM) and Transformer-XL based NLMs. For recurrent based NLMs, we explore context carry over mechanism and feature based augmentation, where we incorporate other forms of contextual information such as bot response and system dialogue acts as classified by a Natural Language Understanding (NLU) model. To mitigate the sharp nearby, fuzzy far away problem with contextual NLM, we propose the use of attention layer over lexical metadata to improve feature based augmentation. Additionally, we adapt our contextual NLM towards user provided on-the-fly speech patterns by leveraging encodings from a large pre-trained masked language model and performing fusion with a Transformer-XL based NLM. We test our proposed models using N-best rescoring of ASR hypotheses of task-oriented dialogues and also evaluate on downstream NLU tasks such as intent classification and slot labeling. The best performing model shows a relative WER between 1.6% and 9.1% and a slot labeling F1 score improvement of 4% over non-contextual baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا