We propose a novel method for drift estimation of multiscale diffusion processes when a sequence of discrete observations is given. For the Langevin dynamics in a two-scale potential, our approach relies on the eigenvalues and the eigenfunctions of the homogenized dynamics. Our first estimator is derived from a martingale estimating function of the generator of the homogenized diffusion process. However, the unbiasedness of the estimator depends on the rate with which the observations are sampled. We therefore introduce a second estimator which relies also on filtering the data and we prove that it is asymptotically unbiased independently of the sampling rate. A series of numerical experiments illustrate the reliability and efficiency of our different estimators.
We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coefficient of the homogenized equation requires pre-processing of the data, often in the form of subsampling; this is because the two-scale equation and the homogenized single-scale equation are incompatible at small scales, generating mutually singular measures on the path space. We avoid subsampling and work instead with filtered data, found by application of an appropriate kernel function, and compute maximum likelihood estimators based on the filtered process. We show that the estimators we propose are asymptotically unbiased and demonstrate numerically the advantages of our method with respect to subsampling. Finally, we show how our filtered data methodology can be combined with Bayesian techniques and provide a full uncertainty quantification of the inference procedure.
We present a methodology based on filtered data and moving averages for estimating robustly effective dynamics from observations of multiscale systems. We show in a semi-parametric framework of the Langevin type that the method we propose is asymptotically unbiased with respect to homogenization theory. Moreover, we demonstrate with a series of numerical experiments that the method we propose here outperforms traditional techniques for extracting coarse-grained dynamics from data, such as subsampling, in terms of bias and of robustness.
We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation describing the dynamics on the longer diffusive time scale, i.e. in a homogenization framework. We examine the case where both the drift and the diffusion coefficients in the effective dynamics are space-dependent and depend on multiple unknown parameters. It is known that classical estimators, such as Maximum Likelihood and Quadratic Variation of the Path Estimators, fail to obtain reasonable estimates for parameters in the effective dynamics when based on observations of the underlying multiscale diffusion. We propose a novel algorithm for estimating both the drift and diffusion coefficients in the effective dynamics based on a semi-parametric framework. We demonstrate by means of extensive numerical simulations of a number of selected examples that the algorithm performs well when applied to data from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively to obtain accurate and unbiased estimates.
We introduce a residual-based stabilized formulation for incompressible Navier-Stokes flow that maintains discrete (and, for divergence-conforming methods, strong) mass conservation for inf-sup stable spaces with $H^1$-conforming pressure approximation, while providing optimal convergence in the diffusive regime, robustness in the advective regime, and energetic stability. The method is formally derived using the variational multiscale (VMS) concept, but with a discrete fine-scale pressure field which is solved for alongside the coarse-scale unknowns such that the coarse and fine scale velocities separately satisfy discrete mass conservation. We show energetic stability for the full Navier-Stokes problem, and we prove convergence and robustness for a linearized model (Oseen flow), under the assumption of a divergence-conforming discretization. Numerical results indicate that all properties extend to the fully nonlinear case and that the proposed formulation can serve to model unresolved turbulence.
The aim of this paper is to study the asymptotic properties of the maximum likelihood estimator (MLE) of the drift coefficient for fractional stochastic heat equation driven by an additive space-time noise. We consider the traditional for stochastic partial differential equations statistical experiment when the measurements are performed in the spectral domain, and in contrast to the existing literature, we study the asymptotic properties of the maximum likelihood (type) estimators (MLE) when both, the number of Fourier modes and the time go to infinity. In the first part of the paper we consider the usual setup of continuous time observations of the Fourier coefficients of the solutions, and show that the MLE is consistent, asymptotically normal and optimal in the mean-square sense. In the second part of the paper we investigate the natural time discretization of the MLE, by assuming that the first N Fourier modes are measured at M time grid points, uniformly spaced over the time interval [0,T]. We provide a rigorous asymptotic analysis of the proposed estimators when N goes to infinity and/or T, M go to infinity. We establish sufficient conditions on the growth rates of N, M and T, that guarantee consistency and asymptotic normality of these estimators.
Assyr Abdulle
,Grigorios A. Pavliotis
,Andrea Zanoni
.
(2021)
.
"Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale diffusions"
.
Andrea Zanoni
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا