Do you want to publish a course? Click here

Time dynamics with matrix product states: Many-body localization transition of large systems revisited

82   0   0.0 ( 0 )
 Added by Piotr Sierant
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.



rate research

Read More

Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in systems much larger than those accessible to exact diagonalization. System sizes and length scales that can be controllably accessed by the MPS approach are comparable to those studied in state-of-the-art experiments. Results for 1D, quasi-1D, and 2D random systems, as well as 1D quasi-periodic systems are presented. On time scales explored (up to $t approx 300$ in units set by the hopping amplitude), a slow, subdiffusive transport in a rather broad disorder range on the ergodic side of the MBL transition is found. For 1D random spin chains, which serve as a standard model of the MBL transition, the MPS study demonstrates a substantial drift of the critical point $W_c(L)$ with the system size $L$: while for $L approx 20$ we find $W_c approx 4$, as also given by exact diagonalization, the MPS results for $L = 50$--100 provide evidence that the critical disorder saturates, in the large-$L$ limit, at $W_c approx 5.5$. For quasi-periodic systems, these finite-size effects are much weaker, which suggests that they can be largely attributed to rare events. For quasi-1D ($dtimes L$, with $d ll L$) and 2D ($Ltimes L$) random systems, the MPS data demonstrate an unbounded growth of $W_c$ in the limit of large $d$ and $L$, in agreement with analytical predictions based on the rare-event avalanche theory.
We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a completely unstructured model and a physical system, we uncover a remarkable degree of universality, suggesting that the effective localization length is a universal combination of model parameters up until it drops down to the microscopic scale.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those of Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the phase transition is due to the so-called avalanche instability of the MBL phase. We show that the critical behavior can be determined analytically within this RG. On a rough $textit{qualitative}$ level the RG flow near the critical fixed point is similar to the Kosterlitz-Thouless (KT) flow as previously shown, but there are important differences in the critical behavior. Thus we show that this MBL transition is in a new universality class that is different from KT. The divergence of the correlation length corresponds to critical exponent $ u rightarrow infty$, but the divergence is weaker than for the KT transition.
We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of spatially localized vibrational modes, serving as a model of Dynamic Nuclear Polarization. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect, as manifested by the hole-burning shape of the electron paramagnetic resonance spectrum. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4 - 5 Kelvin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا