Do you want to publish a course? Click here

Supervisory Control of Quantum Discrete Event Systems

92   0   0.0 ( 0 )
 Added by Daowen Qiu
 Publication date 2021
and research's language is English
 Authors Daowen Qiu




Ask ChatGPT about the research

Discrete event systems (DES) have been established and deeply developed in the framework of probabilistic and fuzzy computing models due to the necessity of practical applications in fuzzy and probabilistic systems. With the development of quantum computing and quantum control, a natural problem is to simulate DES by means of quantum computing models and to establish {it quantum DES} (QDES). The motivation is twofold: on the one hand, QDES have potential applications when DES are simulated and processed by quantum computers, where quantum systems are employed to simulate the evolution of states driven by discrete events, and on the other hand, QDES may have essential advantages over DES concerning state complexity for imitating some practical problems. The goal of this paper is to establish a basic framework of QDES by using {it quantum finite automata} (QFA) as the modelling formalisms, and the supervisory control theorems of QDES are established and proved. Then we present a polynomial-time algorithm to decide whether or not the controllability condition holds. In particular, we construct a number of new examples of QFA to illustrate the supervisory control of QDES and to verify the essential advantages of QDES over DES in state complexity.



rate research

Read More

The supervisory control of probabilistic discrete event systems (PDESs) is investigated under the assumptions that the supervisory controller (supervisor) is probabilistic and has a partial observation. The probabilistic P-supervisor is defined, which specifies a probability distribution on the control patterns for each observation. The notions of the probabilistic controllability and observability are proposed and demonstrated to be a necessary and sufficient conditions for the existence of the probabilistic P-supervisors. Moreover, the polynomial verification algorithms for the probabilistic controllability and observability are put forward. In addition, the infimal probabilistic controllable and observable superlanguage is introduced and computed as the solution of the optimal control problem of PDESs. Several examples are presented to illustrate the results obtained.
In this paper, we propose a new automaton property of N-step nonblockingness for a given positive integer N. This property quantifies the standard nonblocking property by capturing the practical requirement that all tasks be completed within a bounded number of steps. Accordingly, we formulate a new N-step nonblocking supervisory control problem, and characterize its solvability in terms of a new concept of N-step language completability. It is proved that there exists a unique supremal N-step completable sublanguage of a given language, and we develop a generator-based algorithm to compute the supremal sublanguage. Finally, together with the supremal controllable sublanguage, we design an algorithm to compute a maximally permissive supervisory control solution to the new N-step nonblocking supervisory control problem.
This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event systems (DES) with communication delays. In previous work a distributed supervisory control problem has been investigated on the assumption that inter-agent communications take place with negligible delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts. For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system behavior, and present an effective computational test for delay-robustness. From the test it typically results that the given delay-free distributed control is delay-robust with respect to certain communicated events, but not for all, thus distinguishing events which are not delay-critical from those that are. The approach is illustrated by a workcell model with three communicating agents.
We study the new concept of relative coobservability in decentralized supervisory control of discrete-event systems under partial observation. This extends our previous work on relative observability from a centralized setup to a decentralized one. A fundamental concept in decentralized supervisory control is coobservability (and its several variations); this property is not, however, closed under set union, and hence there generally does not exist the supremal element. Our proposed relative coobservability, although stronger than coobservability, is algebraically well-behaved, and the supremal relatively coobservable sublanguage of a given language exists. We present an algorithm to compute this supremal sublanguage. Moreover, relative coobservability is weaker than conormality, which is also closed under set union; unlike conormality, relative coobservability imposes no constraint on disabling unobservable controllable events.
475 - Yingying Liu , Kai Cai , 2017
In this paper we study multi-agent discrete-event systems where the agents can be divided into several groups, and within each group the agents have similar or identical state transition structures. We employ a relabeling map to generate a template structure for each group, and synthesize a scalable supervisor whose state size and computational process are independent of the number of agents. This scalability allows the supervisor to remain invariant (no recomputation or reconfiguration needed) if and when there are agents removed due to failure or added for increasing productivity. The constant computational effort for synthesizing the scalable supervisor also makes our method promising for handling large-scale multi-agent systems. Moreover, based on the scalable supervisor we design scalable local controllers, one for each component agent, to establish a purely distributed control architecture. Three examples are provided to illustrate our proposed scalable supervisory synthesis and the resulting scalable supervisors as well as local controllers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا