Do you want to publish a course? Click here

Shufflecast: An Optical, Data-rate Agnostic and Low-Power Multicast Architecture for Next-Generation Compute Clusters

56   0   0.0 ( 0 )
 Added by Sushovan Das
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

An optical circuit-switched network core has the potential to overcome the inherent challenges of a conventional electrical packet-switched core of todays compute clusters. As optical circuit switches (OCS) directly handle the photon beams without any optical-electrical-optical (O/E/O) conversion and packet processing, OCS-based network cores have the following desirable properties: a) agnostic to data-rate, b) negligible/zero power consumption, c) no need of transceivers, d) negligible forwarding latency, and e) no need for frequent upgrade. Unfortunately, OCS can only provide point-to-point (unicast) circuits. They do not have built-in support for one-to-many (multicast) communication, yet multicast is fundamental to a plethora of data-intensive applications running on compute clusters nowadays. In this paper, we propose Shufflecast, a novel optical network architecture for next-generation compute clusters that can support high-performance multicast satisfying all the properties of an OCS-based network core. Shufflecast leverages small fanout, inexpensive, passive optical splitters to connect the Top-of-rack (ToR) switch ports, ensuring data-rate agnostic, low-power, physical-layer multicast. We thoroughly analyze Shufflecasts highly scalable data plane, light-weight control plane, and graceful failure handling. Further, we implement a complete prototype of Shufflecast in our testbed and extensively evaluate the network. Shufflecast is more power-efficient than the state-of-the-art multicast mechanisms. Also, Shufflecast is more cost-efficient than a conventional packet-switched network. By adding Shufflecast alongside an OCS-based unicast network, an all-optical network core with the aforementioned desirable properties supporting both unicast and multicast can be realized.



rate research

Read More

The capacity of offloading data and control tasks to the network is becoming increasingly important, especially if we consider the faster growth of network speed when compared to CPU frequencies. In-network compute alleviates the host CPU load by running tasks directly in the network, enabling additional computation/communication overlap and potentially improving overall application performance. However, sustaining bandwidths provided by next-generation networks, e.g., 400 Gbit/s, can become a challenge. sPIN is a programming model for in-NIC compute, where users specify handler functions that are executed on the NIC, for each incoming packet belonging to a given message or flow. It enables a CUDA-like acceleration, where the NIC is equipped with lightweight processing elements that process network packets in parallel. We investigate the architectural specialties that a sPIN NIC should provide to enable high-performance, low-power, and flexible packet processing. We introduce PsPIN, a first open-source sPIN implementation, based on a multi-cluster RISC-V architecture and designed according to the identified architectural specialties. We investigate the performance of PsPIN with cycle-accurate simulations, showing that it can process packets at 400 Gbit/s for several use cases, introducing minimal latencies (26 ns for 64 B packets) and occupying a total area of 18.5 mm 2 (22 nm FDSOI).
The evolution of software defined networking (SDN) has played a significant role in the development of next-generation networks (NGN). SDN as a programmable network having service provisioning on the fly has induced a keen interest both in academic world and industry. In this article, a comprehensive survey is presented on SDN advancement over conventional network. The paper covers historical evolution in relation to SDN, functional architecture of the SDN and its related technologies, and OpenFlow standards/protocols, including the basic concept of interfacing of OpenFlow with network elements (NEs) such as optical switches. In addition a selective architecture survey has been conducted. Our proposed architecture on software defined heterogeneous network, points towards new technology enabling the opening of new vistas in the domain of network technology, which will facilitate in handling of huge internet traffic and helps infrastructure and service providers to customize their resources dynamically. Besides, current research projects and various activities as being carried out to standardize SDN as NGN by different standard development organizations (SODs) have been duly elaborated to judge how this technology moves towards standardization.
106 - Jing Yang , Yi Zhong , Xiaohu Ge 2019
The conventional outage in wireless communication systems is caused by the deterioration of the wireless communication link, i.e., the received signal power is less than the minimum received signal power. Is there a possibility that the outage occurs in wireless communication systems with a good channel state? Based on both communication and heat transfer theories, a power-consumption outage in the wireless communication between millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) base stations (BSs) and smartphones has been modeled and analyzed. Moreover, the total transmission time model with respect to the number of power-consumption outages is derived for mmWave massive MIMO communication systems. Simulation results indicate that the total transmission time is extended by the power-consumption outage, which deteriorates the average transmission rate of mmWave massive MIMO BSs.
Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast networks performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.
We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a very large state space. Therefore in this paper we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network. We show that optimal power control can be learnt for reasonably large systems via this approach. The average power constraint is ensured via a Lagrange multiplier, which is also learnt. Finally, we demonstrate that a slight modification of the learning algorithm allows the optimal control to track the time varying system statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا