Do you want to publish a course? Click here

A Survey on Software Defined Networking: Architecture for Next Generation Network

116   0   0.0 ( 0 )
 Added by Rakesh Kumar Jha Dr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The evolution of software defined networking (SDN) has played a significant role in the development of next-generation networks (NGN). SDN as a programmable network having service provisioning on the fly has induced a keen interest both in academic world and industry. In this article, a comprehensive survey is presented on SDN advancement over conventional network. The paper covers historical evolution in relation to SDN, functional architecture of the SDN and its related technologies, and OpenFlow standards/protocols, including the basic concept of interfacing of OpenFlow with network elements (NEs) such as optical switches. In addition a selective architecture survey has been conducted. Our proposed architecture on software defined heterogeneous network, points towards new technology enabling the opening of new vistas in the domain of network technology, which will facilitate in handling of huge internet traffic and helps infrastructure and service providers to customize their resources dynamically. Besides, current research projects and various activities as being carried out to standardize SDN as NGN by different standard development organizations (SODs) have been duly elaborated to judge how this technology moves towards standardization.



rate research

Read More

Software defined networking (SDN) has emerged as a promising paradigm for making the control of communication networks flexible. SDN separates the data packet forwarding plane, i.e., the data plane, from the control plane and employs a central controller. Network virtualization allows the flexible sharing of physical networking resources by multiple users (tenants). Each tenant runs its own applications over its virtual network, i.e., its slice of the actual physical network. The virtualization of SDN networks promises to allow networks to leverage the combined benefits of SDN networking and network virtualization and has therefore attracted significant research attention in recent years. A critical component for virtualizing SDN networks is an SDN hypervisor that abstracts the underlying physical SDN network into multiple logically isolated virtual SDN networks (vSDNs), each with its own controller. We comprehensively survey hypervisors for SDN networks in this article. We categorize the SDN hypervisors according to their architecture into centralized and distributed hypervisors. We furthermore sub-classify the hypervisors according to their execution platform into hypervisors running exclusively on general-purpose compute platforms, or on a combination of general-purpose compute platforms with general- or special-purpose network elements. We exhaustively compare the network attribute abstraction and isolation features of the existing SDN hypervisors. As part of the future research agenda, we outline the development of a performance evaluation framework for SDN hypervisors.
Data centres are growing in numbers and size, and their networks expanding to carry larger amounts of traffic. The traffic profile is constantly varying, particularly in cloud data centres where tenants arrive, leave, and may change their resource requirements in between, and so the network configuration must change at a commensurate rate. Software-Defined Networking - programmatic control of network configuration - has been critical to meeting the demands of modern data centre network management, and has been the subject of intense focus by the research community, working in conjunction with industry. In this survey, we review Software-Defined Networking research targeting the management and operation of data centre networks.
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to policy changes, increasing traffic, or failures. This paper presents a structured survey of mechanism and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable consistency properties that should be provided throughout a network update, the algorithmic techniques which are needed to meet these consistency properties, and the implications on the speed and costs at which updates can be performed. We also explain the relationship between consistent network update problems and classic algorithmic optimization ones. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs) and their primary need for correct and efficient update techniques, the fundamental underlying problems are not new, and we provide a historical perspective of the subject as well.
Based on software-defined principles, we propose a holistic architecture for Cyberphysical Systems (CPS) and Internet of Things (IoT) applications, and highlight the merits pertaining to scalability, flexibility, robustness, interoperability, and cyber security. Our design especially capitalizes on the computational units possessed by smart agents, which may be utilized for decentralized control and in-network data processing. We characterize the data flow, communication flow, and control flow that assimilate a set of components such as sensors, actuators, controllers, and coordinators in a systemic programmable fashion. We specifically aim for distributed and decentralized decision-making by spreading the control over several hierarchical layers. In addition, we propose a middleware layer to encapsulate units and services for time-critical operations in highly dynamic environments. We further enlist a multitude of vulnerabilities to cyberattacks, and integrate software-defined solutions for enabling resilience, detection, and recovery. In this purview, several controllers cooperate to identify and respond to security threats and abnormal situations in a self-adjusting manner. Last, we illustrate numerical simulations in support of the virtues of a software-defined design for CPS and IoT.
Deep packet inspection (DPI) has been extensively investigated in software-defined networking (SDN) as complicated attacks may intractably inject malicious payloads in the packets. Existing proprietary pattern-based or port-based third-party DPI tools can suffer from limitations in efficiently processing a large volume of data traffic. In this paper, a novel OpenFlow-enabled deep packet inspection (OFDPI) approach is proposed based on the SDN paradigm to provide adaptive and efficient packet inspection. First, OFDPI prescribes an early detection at the flow-level granularity by checking the IP addresses of each new flow via OpenFlow protocols. Then, OFDPI allows for deep packet inspection at the packet-level granularity: (i) for unencrypted packets, OFDPI extracts the features of accessible payloads, including tri-gram frequency based on Term Frequency and Inverted Document Frequency (TF-IDF) and linguistic features. These features are concatenated into a sparse matrix representation and are then applied to train a binary classifier with logistic regression rather than matching with specific pattern combinations. In order to balance the detection accuracy and performance bottleneck of the SDN controller, OFDPI introduces an adaptive packet sampling window based on the linear prediction; and (ii) for encrypted packets, OFDPI extracts notable features of packets and then trains a binary classifier with a decision tree, instead of decrypting the encrypted traffic to weaken user privacy. A prototype of OFDPI is implemented on the Ryu SDN controller and the Mininet platform. The performance and the overhead of the proposed sulotion are assessed using the real-world datasets through experiments. The numerical results indicate that OFDPI can provide a significant improvement in detection accuracy with acceptable overheads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا