Do you want to publish a course? Click here

Nuclear quantum effects in thermal conductivity from centroid molecular dynamics

124   0   0.0 ( 0 )
 Added by David Manolopoulos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the centroid molecular dynamics (CMD) method provides a realistic way to calculate the thermal diffusivity $a=lambda/rho c_{rm V}$ of a quantum mechanical liquid such as para-hydrogen. Once $a$ has been calculated, the thermal conductivity can be obtained from $lambda=rho c_{rm V}a$, where $rho$ is the density of the liquid and $c_{rm V}$ is the constant-volume heat capacity. The use of this formula requires an accurate quantum mechanical heat capacity $c_{rm V}$, which can be obtained from a path integral molecular dynamics simulation. The thermal diffusivity can be calculated either from the decay of the equilibrium density fluctuations in the liquid or by using the Green-Kubo relation to calculate the CMD approximation to $lambda$ and then dividing this by the corresponding approximation to $rho c_{rm V}$. We show that both approaches give the same results for liquid para-hydrogen and that these results are in good agreement with experimental measurements of the thermal conductivity over a wide temperature range. In particular, they correctly predict a decrease in the thermal conductivity at low temperatures -- an effect that stems from the decrease in the quantum mechanical heat capacity and has eluded previous para-hydrogen simulations. We also show that the method gives equally good agreement with experimental measurements for the thermal conductivity of normal liquid helium.



rate research

Read More

95 - H. Dammak , F Brieuc 2019
To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawback is the requirement of additional techniques to access time correlation functions (ring polymer MD or centroid MD). We developed an alternative technique based on a quantum thermal bath (QTB) which reduces the computation time by a factor of ~20. The QTB approach consists in a classical Langevin dynamics in which the white noise random force is replaced by a Gaussian random force having the power spectral density given by the quantum fluctuation-dissipation theorem. The method has yielded satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat capacity of a MgO crystal, and isotope effects in 7 LiH and 7 LiD. Unfortunately, the QTB is subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to combine the QTB and PIMD techniques. It requires the modification of the power spectral density of the random force within the QTB. This combination can also be seen as a way to speed up the PIMD.
The present study addresses the role of molecular non-equilibrium effects in thermal ignition problems. We consider a single binary reaction of the form A+B -> C+C. Molecular dynamics calculations were performed for activation energies ranging between RT and 7.5RT and heat release of 2.5RT and 10RT. The evolution of up to 10,000 particles was calculated as the system undergoes a thermal ignition at constant volume. Ensemble averages of 100 calculations for each parameter set permitted to determine the ignition delay, along with a measure of the stochasticity of the process. A well behaved convergence to large system sizes is also demonstrated. The ignition delay calculations were compared with those obtained at the continuum level using rates derived from kinetic theory: the standard rate assuming that the distribution of the speed of the particles is the Maxwell-Boltzmann distribution, and the perturbed rates by Prigogine and Xhrouet [1] for an isothermal system, and Prigogine and Mahieu [2] for an energy releasing reaction, obtained by the Chapman-Enskog perturbation procedure. The molecular results were found in very good agreement with the latter at low temperatures, confirming that non-equilibrium effects promote the formation of energetic particles, that serve as seeds for subsequent reaction events: i.e., hot spots. This effect was found to lower the ignition delay by up to 30%. At high temperatures, the ignition delay obtained from the standard equilibrium rate was found to be up to 60% longer than the molecular calculations. This effect is due to the rapidity of the reactive collisions that do not allow the system to equilibrate. For this regime, none of the perturbation solutions obtained by the Chapman-Enskog procedure were valid. This study thus shows the importance of non-equilibrium effects in thermal ignition problems, for most temperatures of practical interest.
Single layer molybdenum disulfide (SLMoS2), a semiconductor possesses intrinsic bandgap and high electron mobility, has attracted great attention due to its unique electronic, optical, mechanical and thermal properties. Although thermal conductivity of SLMoS2 has been widely investigated recently, less studies focus on molybdenum disulfide nanotube (MoS2NT). Here, the comprehensive temperature, size and strain effect on thermal conductivity of MoS2NT are investigated. A chirality-dependent strain effect is identified in thermal conductivity of zigzag nanotube, in which the phonon group velocity can be significantly reduced by strain. Besides, results show that thermal conductivity has a ~T-1 and a ~Lb{eta} relation with temperature from 200 to 400 K and length from 10 to 320 nm, respectively. This work not only provides feasible strategies to modulate the thermal conductivity of MoS2NT, but also offers useful insights into the fundamental mechanisms that govern the thermal conductivity, which can be used for the thermal management of low dimensional materials in optical, electronic and thermoelectrical devices. Introduction.
Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor $boldsymbol{beta}^{(2)}$. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant $boldsymbol{beta}^{(2)}$. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H$_2$O and D$_2$O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments.
We demonstrate the accuracy and efficiency of a recently introduced approach to account for nuclear quantum effects (NQE) in molecular simulations: the adaptive Quantum Thermal Bath (adQTB). In this method, zero point energy is introduced through a generalized Langevin thermostat designed to precisely enforce the quantum fluctuation-dissipation theorem. We propose a refined adQTB algorithm with improved accuracy and we report adQTB simulations of liquid water. Through extensive comparison with reference path integral calculations, we demonstrate that it provides excellent accuracy for a broad range of structural and thermodynamic observables as well as infrared vibrational spectra. The adQTB has a computational cost comparable to classical molecular dynamics, enabling simulations of up to millions of degrees of freedom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا