Do you want to publish a course? Click here

FPGA Implementations of Layered MinSum LDPC Decoders Using RCQ Message Passing

93   0   0.0 ( 0 )
 Added by Caleb Terrill
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Non-uniform message quantization techniques such as reconstruction-computation-quantization (RCQ) improve error-correction performance and decrease hardware complexity of low-density parity-check (LDPC) decoders that use a flooding schedule. Layered MinSum RCQ (L-msRCQ) enables message quantization to be utilized for layered decoders and irregular LDPC codes. We investigate field-programmable gate array (FPGA) implementations of L-msRCQ decoders. Three design methods for message quantization are presented, which we name the Lookup, Broadcast, and Dribble methods. The decoding performance and hardware complexity of these schemes are compared to a layered offset MinSum (OMS) decoder. Simulation results on a (16384, 8192) protograph-based raptor-like (PBRL) LDPC code show that a 4-bit L-msRCQ decoder using the Broadcast method can achieve a 0.03 dB improvement in error-correction performance while using 12% fewer registers than the OMS decoder. A Broadcast-based 3-bit L-msRCQ decoder uses 15% fewer lookup tables, 18% fewer registers, and 13% fewer routed nets than the OMS decoder, but results in a 0.09 dB loss in performance.



rate research

Read More

Motivated by recently derived fundamental limits on total (transmit + decoding) power for coded communication with VLSI decoders, this paper investigates the scaling behavior of the minimum total power needed to communicate over AWGN channels as the target bit-error-probability tends to zero. We focus on regular-LDPC codes and iterative message-passing decoders. We analyze scaling behavior under two VLSI complexity models of decoding. One model abstracts power consumed in processing elements (node model), and another abstracts power consumed in wires which connect the processing elements (wire model). We prove that a coding strategy using regular-LDPC codes with Gallager-B decoding achieves order-optimal scaling of total power under the node model. However, we also prove that regular-LDPC codes and iterative message-passing decoders cannot meet existing fundamental limits on total power under the wire model. Further, if the transmit energy-per-bit is bounded, total power grows at a rate that is worse than uncoded transmission. Complementing our theoretical results, we develop detailed physical models of decoding implementations using post-layout circuit simulations. Our theoretical and numerical results show that approaching fundamental limits on total power requires increasing the complexity of both the code design and the corresponding decoding algorithm as communication distance is increased or error-probability is lowered.
Tracking an unknown number of targets based on multipath measurements provided by an over-the-horizon radar (OTHR) network with a statistical ionospheric model is complicated, which requires solving four subproblems: target detection, target tracking, multipath data association and ionospheric height identification. A joint solution is desired since the four subproblems are highly correlated, but suffering from the intractable inference problem of high-dimensional latent variables. In this paper, a unified message passing approach, combining belief propagation (BP) and mean-field (MF) approximation, is developed for simplifying the intractable inference. Based upon the factor graph corresponding to a factorization of the joint probability distribution function (PDF) of the latent variables and a choice for a separation of this factorization into BP region and MF region, the posterior PDFs of continuous latent variables including target kinematic state, target visibility state, and ionospheric height, are approximated by MF due to its simple MP update rules for conjugate-exponential models. With regard to discrete multipath data association which contains one-to-one frame (hard) constraints, its PDF is approximated by loopy BP. Finally, the approximated posterior PDFs are updated iteratively in a closed-loop manner, which is effective for dealing with the coupling issue among target detection, target tracking, multipath data association, and ionospheric height identification. Meanwhile, the proposed approach has the measurement-level fusion architecture due to the direct processing of the raw multipath measurements from an OTHR network, which is benefit to improving target tracking performance. Its performance is demonstrated on a simulated OTHR network multitarget tracking scenario.
Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing consensus messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.
Compressed sensing (CS) deals with the problem of reconstructing a sparse vector from an under-determined set of observations. Approximate message passing (AMP) is a technique used in CS based on iterative thresholding and inspired by belief propagation in graphical models. Due to the high transmission rate and a high molecular absorption, spreading loss and reflection loss, the discrete-time channel impulse response (CIR) of a typical indoor THz channel is very long and exhibits an approximately sparse characteristic. In this paper, we develop AMP based channel estimation algorithms for indoor THz communications. The performance of these algorithms is compared to the state of the art. We apply AMP with soft- and hard-thresholding. Unlike the common applications in which AMP with hard-thresholding diverges, the properties of the THz channel favor this approach. It is shown that THz channel estimation via hard-thresholding AMP outperforms all previously proposed methods and approaches the oracle based performance closely.
178 - Man Luo , Qinghua Guo , Ming Jin 2021
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا