No Arabic abstract
The 2021 SIGIR workshop on eCommerce is hosting the Coveo Data Challenge for In-session prediction for purchase intent and recommendations. The challenge addresses the growing need for reliable predictions within the boundaries of a shopping session, as customer intentions can be different depending on the occasion. The need for efficient procedures for personalization is even clearer if we consider the e-commerce landscape more broadly: outside of giant digital retailers, the constraints of the problem are stricter, due to smaller user bases and the realization that most users are not frequently returning customers. We release a new session-based dataset including more than 30M fine-grained browsing events (product detail, add, purchase), enriched by linguistic behavior (queries made by shoppers, with items clicked and items not clicked after the query) and catalog meta-data (images, text, pricing information). On this dataset, we ask participants to showcase innovative solutions for two open problems: a recommendation task (where a model is shown some events at the start of a session, and it is asked to predict future product interactions); an intent prediction task, where a model is shown a session containing an add-to-cart event, and it is asked to predict whether the item will be bought before the end of the session.
Improved search quality enhances users satisfaction, which directly impacts sales growth of an E-Commerce (E-Com) platform. Traditional Learning to Rank (LTR) algorithms require relevance judgments on products. In E-Com, getting such judgments poses an immense challenge. In the literature, it is proposed to employ user feedback (such as clicks, add-to-basket (AtB) clicks and orders) to generate relevance judgments. It is done in two steps: first, query-product pair data are aggregated from the logs and then order rate etc are calculated for each pair in the logs. In this paper, we advocate counterfactual risk minimization (CRM) approach which circumvents the need of relevance judgements, data aggregation and is better suited for learning from logged data, i.e. contextual bandit feedback. Due to unavailability of public E-Com LTR dataset, we provide textit{Mercateo dataset} from our platform. It contains more than 10 million AtB click logs and 1 million order logs from a catalogue of about 3.5 million products associated with 3060 queries. To the best of our knowledge, this is the first work which examines effectiveness of CRM approach in learning ranking model from real-world logged data. Our empirical evaluation shows that our CRM approach learns effectively from logged data and beats a strong baseline ranker ($lambda$-MART) by a huge margin. Our method outperforms full-information loss (e.g. cross-entropy) on various deep neural network models. These findings demonstrate that by adopting CRM approach, E-Com platforms can get better product search quality compared to full-information approach. The code and dataset can be accessed at: https://github.com/ecom-research/CRM-LTR.
With the rapid growth of e-Commerce, online product search has emerged as a popular and effective paradigm for customers to find desired products and engage in online shopping. However, there is still a big gap between the products that customers really desire to purchase and relevance of products that are suggested in response to a query from the customer. In this paper, we propose a robust way of predicting relevance scores given a search query and a product, using techniques involving machine learning, natural language processing and information retrieval. We compare conventional information retrieval models such as BM25 and Indri with deep learning models such as word2vec, sentence2vec and paragraph2vec. We share some of our insights and findings from our experiments.
One of the ultimate goals of e-commerce platforms is to satisfy various shopping needs for their customers. Much efforts are devoted to creating taxonomies or ontologies in e-commerce towards this goal. However, user needs in e-commerce are still not well defined, and none of the existing ontologies has the enough depth and breadth for universal user needs understanding. The semantic gap in-between prevents shopping experience from being more intelligent. In this paper, we propose to construct a large-scale e-commerce cognitive concept net named AliCoCo, which is practiced in Alibaba, the largest Chinese e-commerce platform in the world. We formally define user needs in e-commerce, then conceptualize them as nodes in the net. We present details on how AliCoCo is constructed semi-automatically and its successful, ongoing and potential applications in e-commerce.
Advertising creatives are ubiquitous in E-commerce advertisements and aesthetic creatives may improve the click-through rate (CTR) of the products. Nowadays smart advertisement platforms provide the function of compositing creatives based on source materials provided by advertisers. Since a great number of creatives can be generated, it is difficult to accurately predict their CTR given a limited amount of feedback. Factorization machine (FM), which models inner product interaction between features, can be applied for the CTR prediction of creatives. However, interactions between creative elements may be more complex than the inner product, and the FM-estimated CTR may be of high variance due to limited feedback. To address these two issues, we propose an Automated Creative Optimization (AutoCO) framework to model complex interaction between creative elements and to balance between exploration and exploitation. Specifically, motivated by AutoML, we propose one-shot search algorithms for searching effective interaction functions between elements. We then develop stochastic variational inference to estimate the posterior distribution of parameters based on the reparameterization trick, and apply Thompson Sampling for efficiently exploring potentially better creatives. We evaluate the proposed method with both a synthetic dataset and two public datasets. The experimental results show our method can outperform competing baselines with respect to cumulative regret. The online A/B test shows our method leads to a 7 increase in CTR compared to the baseline.
Nowadays, E-commerce is increasingly integrated into our daily lives. Meanwhile, shopping process has also changed incrementally from one behavior (purchase) to multiple behaviors (such as view, carting and purchase). Therefore, utilizing interaction data of auxiliary behavior data draws a lot of attention in the E-commerce recommender systems. However, all existing models ignore two kinds of intrinsic heterogeneity which are helpful to capture the difference of user preferences and the difference of item attributes. First (intra-heterogeneity), each user has multiple social identities with otherness, and these different identities can result in quite different interaction preferences. Second (inter-heterogeneity), each item can transfer an item-specific percentage of score from low-level behavior to high-level behavior for the gradual relationship among multiple behaviors. Thus, the lack of consideration of these heterogeneities damages recommendation rank performance. To model the above heterogeneities, we propose a novel method named intra- and inter-heterogeneity recommendation model (ARGO). Specifically, we embed each user into multiple vectors representing the users identities, and the maximum of identity scores indicates the interaction preference. Besides, we regard the item-specific transition percentage as trainable transition probability between different behaviors. Extensive experiments on two real-world datasets show that ARGO performs much better than the state-of-the-art in multi-behavior scenarios.