No Arabic abstract
Measuring the fluctuations of work in coherent quantum systems is notoriously problematic. Aiming to reveal the ultimate source of these problems, we demand of work measurement schemes the sheer minimum and see if those demands can be met at all. We require ($mathfrak{A}$) energy conservation for arbitrary initial states of the system and ($mathfrak{B}$) the Jarzynski equality for thermal initial states. By energy conservation we mean that the average work must be equal to the difference of initial and final average energies, and that untouched systems must exchange deterministically zero work. Requirement $mathfrak{B}$ encapsulates the second law of thermodynamics and the quantum--classical correspondence principle. We prove that work measurement schemes that do not depend on the systems initial state satisfy $mathfrak{B}$ if and only if they coincide with the famous two-point measurement scheme, thereby establishing that state-independent schemes cannot simultaneously satisfy $mathfrak{A}$ and $mathfrak{B}$. Expanding to the realm of state-dependent schemes allows for more compatibility between $mathfrak{A}$ and $mathfrak{B}$. However, merely requiring the state-dependence to be continuous still effectively excludes the coexistence of $mathfrak{A}$ and $mathfrak{B}$, leaving the theoretical possibility open for only a narrow class of exotic schemes.
A superconducting cavity model was proposed as a way to experimentally investigate the work performed in a quantum system. We found a simple mathematical relationship between the free energy variation and visibility measurement in quantum cavity context. If we consider the difference of Hamiltonian at time $t_0$ and $t_lambda$ (protocol time) as a quantum work, then the Jarzynski equality is valid and the visibility can be used to determine the work done on the cavity.
We discuss and qualify a previously unnoticed connection between two different phenomena in the physics of nanoscale friction, general in nature and also met in experiments including sliding emu- lations in optical lattices, and protein force spectroscopy. The first is thermolubricity, designating the condition in which a dry nanosized slider can at sufficiently high temperature and low velocity exhibit very small viscous friction f ~ v despite strong corrugations that would commonly imply hard mechanical stick-slip f ~ log(v). The second, apparently unrelated phenomenon present in externally forced nanosystems, is the occurrence of negative work tails (free lunches) in the work probabilty distribution, tails whose presence is necessary to fulfil the celebrated Jarzynski equality of non-equilibrium statistical mechanics. Here we prove analytically and demonstrate numerically in the prototypical classical overdamped one-dimensional point slider (Prandtl-Tomlinson) model that the presence or absence of thermolubricity is exactly equivalent to satisfaction or violation of the Jarzynski equality. The divide between the two regimes, satisfaction of Jarzynski with ther- molubricity, and violation of both, simply coincides with the total frictional work per cycle falling below or above kT respectively. This concept can, with due caution, be extended to more complex sliders, thus inviting crosscheck experiments, such as searching for free lunches in cold ion sliding as well as in forced protein unwinding, and alternatively checking for a thermolubric regime in dragged colloid monolayers. As an important byproduct, we derive a parameter-free formula expressing the linear velocity coefficient of frictional dissipated power in the thermolubric viscous regime, correcting previous empirically parametrized expressions.
We illustrate the Jarzynski equality on the exactly solvable model of a one-dimensional ideal gas in uniform expansion or compression. The analytical results for the probability density $P(W)$ of the work $W$ performed by the gas are compared with the results of molecular dynamics simulations for a two-dimensional dilute gas of hard spheres.
We derive an equality for non-equilibrium statistical mechanics in finite-dimensional quantum systems. The equality concerns the worst-case work output of a time-dependent Hamiltonian protocol in the presence of a Markovian heat bath. It has has the form worst-case work = penalty - optimum. The equality holds for all rates of changing the Hamiltonian and can be used to derive the optimum by setting the penalty to 0. The optimum term contains the max entropy of the initial state, rather than the von Neumann entropy, thus recovering recent results from single-shot statistical mechanics. Energy coherences can arise during the protocol but are assumed not to be present initially. We apply the equality to an electron box.
We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system can clearly change when wave functions collapse in accordance with the standard textbook (Copenhagen) treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent of the physical measurement process. In Everettian quantum theory, while the expectation value of the Hamiltonian is conserved for the wave function of the universe (including all the branches), it is not constant within individual worlds. It should therefore be possible to experimentally measure violations of conservation of energy, and we suggest an experimental protocol for doing so.