Do you want to publish a course? Click here

Bipolar conduction and giant positive magnetoresistance in doped metallic titanium oxide heterostructures

100   0   0.0 ( 0 )
 Added by Ke Huang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Empowering conventional materials with unexpected magnetoelectric properties is appealing to the multi-functionalization of existing devices and the exploration of future electronics. Recently, owing to its unique effect in modulating a matters properties, ultra-small dopants, e.g. H, D, and Li, attract enormous attention in creating emergent functionalities, such as superconductivity, and metal-insulator transition. Here, we report an observation of bipolar conduction accompanied by a giant positive magnetoresistance in D-doped metallic Ti oxide (TiOxDy) films. To overcome the challenges in intercalating the D into a crystalline oxide, a series of TiOxDy were formed by sequentially doping Ti with D and surface/interface oxidation. Intriguingly, while the electron mobility of the TiOxDy increases by an order of magnitude larger after doping, the emergent holes also exhibit high mobility. Moreover, the bipolar conduction induces a giant magnetoresistance up to 900% at 6 T, which is ~6 times higher than its conventional phase. Our study paves a way to empower conventional materials in existing electronics and induce novel electronic phases.



rate research

Read More

We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.
One of the most fundamental phenomena and a reminder of the electrons relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction, hardly discernible in experiment. Interfacing a ferroelectric, BaTiO$_3$, and a heavy 5$d$ metal with a large spin-orbit coupling, Ba(Os,Ir)O$_3$, we show that giant Rashba spin splittings are indeed possible and even fully controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, also induces a large Os-O distortion. The BaTiO$_3$/BaOsO$_3$ heterostructure is hence the ideal test station for studying the fundamentals of the Rashba effect. It allows intriguing application such as the Datta-Das transistor to operate at room temperature.
The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. Herein we show that metallic interfaces can be realized in SrTiO3-based heterostructures with various insulating overlayers of amorphous LaAlO3, SrTiO3 and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface of SrTiO3 substrates play an important role.
The unidirectional magnetoresistance (UMR) is one of the most complex spin-dependent transport phenomena in ferromagnet/non-magnet bilayers, which involves spin injection and accumulation due to the spin Hall effect (SHE) or Rashba-Edelstein effect (REE), spin-dependent scattering, and magnon scattering at the interface or in the bulk of the ferromagnet. While UMR in metallic bilayers has been studied extensively in very recent years, its magnitude is as small as 10$^-$$^5$, which is too small for practical applications. Here, we demonstrate a giant UMR effect in a heterostructure of BiSb topological insulator -- GaMnAs ferromagnetic semiconductor. We obtained a large UMR ratio of 1.1%, and found that this giant UMR is governed not by the giant magnetoresistance (GMR)-like spin-dependent scattering, but by magnon emission/absorption and strong spin-disorder scattering in the GaMnAs layer. Our results provide new insight into the complex physics of UMR, as well as a strategy for enhancing its magnitude for device applications.
The polar interface between LaAlO$_{3}$ and SrTiO$_{3}$ has shown promise as a field effect transistor, with reduced (nanoscale) feature sizes and potentially added functionality over conventional semiconductor systems. However, the mobility of the interfacial two-dimensional electron gas (2DEG) is lower than desirable. Therefore to progress, the highly debated origin of the 2DEG must be understood. Here we present a case for surface redox reactions as the origin of the 2DEG, in particular surface O vacancies, using a model supported by first principles calculations that describes the redox formation. In agreement with recent spectroscopic and transport measurements, we predict a stabilization of such redox processes (and hence Ti 3$d$ occupation) with film thickness beyond a critical value, which can be smaller than the critical thickness for 2D electronic conduction, since the surface defects generate trapping potentials that will affect the interface electron mobility. Several other recent experimental results, such as lack of core level broadening and shifts, find natural explanation. Pristine systems will likely require changed growth conditions or modified materials with a higher vacancy free energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا