Do you want to publish a course? Click here

Compact CNN Structure Learning by Knowledge Distillation

119   0   0.0 ( 0 )
 Added by Waqar Ahmed
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The concept of compressing deep Convolutional Neural Networks (CNNs) is essential to use limited computation, power, and memory resources on embedded devices. However, existing methods achieve this objective at the cost of a drop in inference accuracy in computer vision tasks. To address such a drawback, we propose a framework that leverages knowledge distillation along with customizable block-wise optimization to learn a lightweight CNN structure while preserving better control over the compression-performance tradeoff. Considering specific resource constraints, e.g., floating-point operations per inference (FLOPs) or model-parameters, our method results in a state of the art network compression while being capable of achieving better inference accuracy. In a comprehensive evaluation, we demonstrate that our method is effective, robust, and consistent with results over a variety of network architectures and datasets, at negligible training overhead. In particular, for the already compact network MobileNet_v2, our method offers up to 2x and 5.2x better model compression in terms of FLOPs and model-parameters, respectively, while getting 1.05% better model performance than the baseline network.

rate research

Read More

Knowledge Distillation refers to a class of methods that transfers the knowledge from a teacher network to a student network. In this paper, we propose Sparse Representation Matching (SRM), a method to transfer intermediate knowledge obtained from one Convolutional Neural Network (CNN) to another by utilizing sparse representation learning. SRM first extracts sparse representations of the hidden features of the teacher CNN, which are then used to generate both pixel-level and image-level labels for training intermediate feature maps of the student network. We formulate SRM as a neural processing block, which can be efficiently optimized using stochastic gradient descent and integrated into any CNN in a plug-and-play manner. Our experiments demonstrate that SRM is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
176 - Guile Wu , Shaogang Gong 2020
Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods.
Deep models trained on long-tailed datasets exhibit unsatisfactory performance on tail classes. Existing methods usually modify the classification loss to increase the learning focus on tail classes, which unexpectedly sacrifice the performance on head classes. In fact, this scheme leads to a contradiction between the two goals of long-tailed learning, i.e., learning generalizable representations and facilitating learning for tail classes. In this work, we explore knowledge distillation in long-tailed scenarios and propose a novel distillation framework, named Balanced Knowledge Distillation (BKD), to disentangle the contradiction between the two goals and achieve both simultaneously. Specifically, given a vanilla teacher model, we train the student model by minimizing the combination of an instance-balanced classification loss and a class-balanced distillation loss. The former benefits from the sample diversity and learns generalizable representation, while the latter considers the class priors and facilitates learning mainly for tail classes. The student model trained with BKD obtains significant performance gain even compared with its teacher model. We conduct extensive experiments on several long-tailed benchmark datasets and demonstrate that the proposed BKD is an effective knowledge distillation framework in long-tailed scenarios, as well as a new state-of-the-art method for long-tailed learning. Code is available at https://github.com/EricZsy/BalancedKnowledgeDistillation .
110 - Haoran Zhao , Xin Sun , Junyu Dong 2021
Recently, distillation approaches are suggested to extract general knowledge from a teacher network to guide a student network. Most of the existing methods transfer knowledge from the teacher network to the student via feeding the sequence of random mini-batches sampled uniformly from the data. Instead, we argue that the compact student network should be guided gradually using samples ordered in a meaningful sequence. Thus, it can bridge the gap of feature representation between the teacher and student network step by step. In this work, we provide a curriculum learning knowledge distillation framework via instance-level sequence learning. It employs the student network of the early epoch as a snapshot to create a curriculum for the student networks next training phase. We carry out extensive experiments on CIFAR-10, CIFAR-100, SVHN and CINIC-10 datasets. Compared with several state-of-the-art methods, our framework achieves the best performance with fewer iterations.
It remains very challenging to build a pedestrian detection system for real world applications, which demand for both accuracy and speed. This work presents a novel hierarchical knowledge distillation framework to learn a lightweight pedestrian detector, which significantly reduces the computational cost and still holds the high accuracy at the same time. Following the `teacher--student diagram that a stronger, deeper neural network can teach a lightweight network to learn better representations, we explore multiple knowledge distillation architectures and reframe this approach as a unified, hierarchical distillation framework. In particular, the proposed distillation is performed at multiple hierarchies, multiple stages in a modern detector, which empowers the student detector to learn both low-level details and high-level abstractions simultaneously. Experiment result shows that a student model trained by our framework, with 6 times compression in number of parameters, still achieves competitive performance as the teacher model on the widely used pedestrian detection benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا