Do you want to publish a course? Click here

Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection

181   0   0.0 ( 0 )
 Added by Sihao Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate generation and selection as a model-agnostic post-processing technique to correct the extrinsic hallucinations (i.e. information not present in the source text) in unfaithful summaries. We learn a discriminative correction model by generating alternative candidate summaries where named entities and quantities in the generated summary are replaced with ones with compatible semantic types from the source document. This model is then used to select the best candidate as the final output summary. Our experiments and analysis across a number of neural summarization systems show that our proposed method is effective in identifying and correcting extrinsic hallucinations. We analyze the typical hallucination phenomenon by different types of neural summarization systems, in hope to provide insights for future work on the direction.



rate research

Read More

224 - Esin Durmus , He He , Mona Diab 2020
Neural abstractive summarization models are prone to generate content inconsistent with the source document, i.e. unfaithful. Existing automatic metrics do not capture such mistakes effectively. We tackle the problem of evaluating faithfulness of a generated summary given its source document. We first collected human annotations of faithfulness for outputs from numerous models on two datasets. We find that current models exhibit a trade-off between abstractiveness and faithfulness: outputs with less word overlap with the source document are more likely to be unfaithful. Next, we propose an automatic question answering (QA) based metric for faithfulness, FEQA, which leverages recent advances in reading comprehension. Given question-answer pairs generated from the summary, a QA model extracts answers from the document; non-matched answers indicate unfaithful information in the summary. Among metrics based on word overlap, embedding similarity, and learned language understanding models, our QA-based metric has significantly higher correlation with human faithfulness scores, especially on highly abstractive summaries.
Sentences produced by abstractive summarization systems can be ungrammatical and fail to preserve the original meanings, despite being locally fluent. In this paper we propose to remedy this problem by jointly generating a sentence and its syntactic dependency parse while performing abstraction. If generating a word can introduce an erroneous relation to the summary, the behavior must be discouraged. The proposed method thus holds promise for producing grammatical sentences and encouraging the summary to stay true-to-original. Our contributions of this work are twofold. First, we present a novel neural architecture for abstractive summarization that combines a sequential decoder with a tree-based decoder in a synchronized manner to generate a summary sentence and its syntactic parse. Secondly, we describe a novel human evaluation protocol to assess if, and to what extent, a summary remains true to its original meanings. We evaluate our method on a number of summarization datasets and demonstrate competitive results against strong baselines.
Despite recent progress in abstractive summarization, systems still suffer from faithfulness errors. While prior work has proposed models that improve faithfulness, it is unclear whether the improvement comes from an increased level of extractiveness of the model outputs as one naive way to improve faithfulness is to make summarization models more extractive. In this work, we present a framework for evaluating the effective faithfulness of summarization systems, by generating a faithfulnessabstractiveness trade-off curve that serves as a control at different operating points on the abstractiveness spectrum. We then show that the Maximum Likelihood Estimation (MLE) baseline as well as a recently proposed method for improving faithfulness, are both worse than the control at the same level of abstractiveness. Finally, we learn a selector to identify the most faithful and abstractive summary for a given document, and show that this system can attain higher faithfulness scores in human evaluations while being more abstractive than the baseline system on two datasets. Moreover, we show that our system is able to achieve a better faithfulness-abstractiveness trade-off than the control at the same level of abstractiveness.
166 - Yuning Mao , Xiang Ren , Heng Ji 2020
Summaries generated by abstractive summarization are supposed to only contain statements entailed by the source documents. However, state-of-the-art abstractive methods are still prone to hallucinate content inconsistent with the source documents. In this paper, we propose constrained abstractive summarization (CAS), a general setup that preserves the factual consistency of abstractive summarization by specifying tokens as constraints that must be present in the summary. We explore the feasibility of using lexically constrained decoding, a technique applicable to any abstractive method with beam search decoding, to fulfill CAS and conduct experiments in two scenarios: (1) Standard summarization without human involvement, where keyphrase extraction is used to extract constraints from source documents; (2) Interactive summarization with human feedback, which is simulated by taking missing tokens in the reference summaries as constraints. Automatic and human evaluations on two benchmark datasets demonstrate that CAS improves the quality of abstractive summaries, especially on factual consistency. In particular, we observe up to 11.2 ROUGE-2 gains when several ground-truth tokens are used as constraints in the interactive summarization scenario.
A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا